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Preface

The 14th International Workshop on Clinical Image-based Procedures: Towards Holistic
Patient Models for Personalized Healthcare (CLIP 2025) was held in Daejeon, South
Korea, on September 23rd, 2025. CLIP 2025 was organized in conjunction with the Inter-
national Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI).

The focus of our workshop is on translational research and it provides a forum for
scientific work applied to clinical practice. Furthermore, holistic personalised patient
models become increasingly important for healthcare. Such personalised models com-
bine medical image data from multiple modalities with other patient data, such as omics,
demographics, and electronic health records for better diagnosis and treatment. Since
2019, CLIP has placed special emphasis on this area of research.

CLIP 2025 received 17 submissions. All submitted papers were double-blindly peer-
reviewed by at least two experts, and 11 papers were finally accepted for presentation at
the workshop and included in this book.

We are very grateful to MICCALI for their long-standing support in providing the
platform for our workshop. We also express our deepest gratitude to all the authors and
our program committee members who made CLIP 2025 a success.
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2D /3D Registration of Acetabular Hip
Implants Under Perspective Projection
and Fully Differentiable Ellipse Fitting

Yehyun Suh®23, J. Ryan Martin*, and Daniel Moyer!»2:3(&)

1 Department of Computer Science, Vanderbilt University, Nashville,
TN 37235, USA
2 Vanderbilt Institute of Surgery and Engineering, Nashville, TN 37235, USA
3 Vanderbilt Lab for Immersive AI Translation, Nashville, TN 37235, USA
4 Department of Orthopaedic Surgery, Vanderbilt University Medical Center,
Nashville, TN 37232, USA
{yehyun.suh,daniel .moyer}@vanderbilt.edu

Abstract. This paper presents a novel method for estimating the ori-
entation and the position of acetabular hip implants in total hip arthro-
plasty using full anterior-posterior hip fluoroscopy images. Our method
accounts for distortions induced in the fluoroscope geometry, estimat-
ing acetabular component pose by creating a forward model of the
perspective projection and implementing differentiable ellipse fitting
for the similarity of our estimation from the ground truth. This app-
roach enables precise estimation of the implant’s rotation (anteversion,
inclination) and the translation under the fluoroscope-induced deforma-
tion. Experimental results from both numerically simulated and digi-
tally reconstructed radiograph environments demonstrate high accuracy
with minimal computational demands, offering enhanced precision and
applicability in clinical and surgical settings. Code: https://github.com/
yehyunsuh/Acetabular- Cup-Pose- Estimator.

Keywords: 2D/3D Registration - Acetabular Hip Implant - Circular
Object Pose Estimation - Fully Differentiable Ellipse Fitting

1 Introduction

Total Hip Arthroplasty (THA) is a surgical procedure that replaces damaged
hip joint cartilage and bone with artificial components [2]. Complications and
post-procedure negative outcomes have in part been ascribed to the orientation
of the acetabular component (“hip joint cup” or “cup”) relative to the patient’s
natural position [10].

It is therefore important to provide intra-operative tracking and pose-
estimation for the cup orientation. As the cups have a known and relatively

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
M. Erdt et al. (Eds.): CLIP 2025, LNCS 16126, pp. 1-10, 2026.
https://doi.org/10.1007/978-3-032-05479-1_1
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simple geometry (effectively hemispheres of known radius), and have high radio-
density, fluoroscopy is the gold-standard option for localization and pose estima-
tion. In the present work, we estimate the 3D pose of the implanted hemispheres
given the observed ellipse in 2D fluoroscopy images.

This task would be analytically solvable using elementary mathematics for
projections along standard Euclidean axes (orthographic projection). However,
image intensifier fluoroscopes have a perspective projection geometry. Images are
formed by projecting rays from the X-ray source (a point) to the collection panel
(a plane), which results in deformations at coordinates away from the origin.
Current methods are largely focused on flat-plate or film collection [9] cases, or
stereotaxis (parallax) effects [12]. The former have significant error when applied
to hemispheres projected with this deformation. The latter requires multiple
image collections from varying points of view, and error in C-arm (fluoroscope
mount) motion or control induces further error.

2D/3D registration offers solution for estimating cup pose by generating a
moving image from digitally reconstructed radiographs (DRR) [6,14] and com-
paring it to a target image. While well-established, its practical application is
limited by the computational inefficiency of repeatedly projecting the 3D implant
model and the limited discriminative power of similarity calculations, which
reduce registration accuracy. Additionally, requiring the exact 3D model-often
unavailable in retrospective studies-further limits feasibility. However, this chal-
lenge of estimating a cup pose is a special case that can be addressed more
efficiently. The method in this study overcomes these issues, enabling robust,
real-world registration without exhaustive 3D modeling.

This paper proposes a method for estimating the acetabular hip implant pose
in fluoroscopy images. Our contributions are:

— pose estimation based on a perspective projection (cone-beam projection),
avoiding the error in orthographic projection methods

— elimination of the need to project a full 3D model of the implant, significantly
reducing computational costs

— error calculation using geometric descriptors of ellipses instead of landmark
positions, solving a correspondence symmetry problem.

— a fully differentiable ellipse fitting process, enabling gradient-based optimiza-
tion for precise pose estimation.

We demonstrate the effectiveness of our method by comparing it with
orthographic projection for orientation estimation, and intensity-based and
embedding-based 2D /3D registration methods for pose estimation. We also show
the robustness in read-world data by implementing our method on cadaver data.

2 Method

Our objective is to recover the pose of the cup from intra-operative fluoroscopy.
The pose is defined by five variables: anteversion/extra planar rotation 6 (rota-
tion into/out of the image plane), inclination/rotation within the image plane
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e Camera (b) A
Ellipse E
« Landmarks $ f
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o Landmarks $”
—— Estimated Ellipse E

Fig. 1. Registration pipeline. (a) Segment the ellipse (orange cross-line), extract
landmarks ST (orange point) on the edge of the ellipse, and calculate ellipse F (orange
ellipsoidal-line) by fitting an ellipse on S*. (b) Rotate and translate landmarks S
(red) to ST (light blue), project to obtain S¥ (purple), and calculate ellipse £ (purple
line) by fitting an ellipse on S*. (c) Calculate the difference (red arrow) between E
and E. (d) Update variable (6, ¢, k, I, h). Repeat process (b), (c), (d) until convergence.
(Color figure online)

©, in-plane translation (k,[), and extra-planar translation h of the cup. By con-
vention these rotations are of the cup and not the imaging system/detector. The
cups are assumed to be metal hemispheres with high radiodensity/image con-
trast, and annotated inner faces. Annotation of these structures in fluoroscopy
can be performed automatically using e.g. a neural network [11,13], which we
demonstrate in several experiments but do not describe for brevity.

Our method is composed of the following steps (shown graphically in Fig. 1):

1. Observe an ellipse E using landmarks (denoted ST) observed from the fluo-
roscopy by fitting an ellipse to it.

2. Given a 3D pose of landmarks (), estimate the projected landmarks (SF)
in the image plane and estimate the nominal projected ellipse (E’)

3. Calculate error between the observed ellipse and the nominal projected ellipse
parameters, then update the 3D pose via gradient descent (or another opti-
mization method).

4. Repeat from Step 2 until convergence.

Notably, this method does not require correspondence between landmarks in .S P
and S* in the image plane or in the estimated 3D pose landmarks S.

2.1 Ellipse Fitting from Landmarks

Fitting the ellipse £ and F from landmarks S* and S* (Fig. 1(a)) uses methods
from Fitzgibbon et al. [4] to form the least squares ellipse fit. This involves
transforming the Euclidean coordinates of the landmarks into a six-dimensional
space that parameterizes the implicit form of the ellipse equation:

Az? 4+ Bxy + Cy*> + Dz + Ey+ F = 0. (1)
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Each landmark coordinates (x;,;) in S* is transformed to a new vector:
[x'i?yi] = [$?7xiymy?a$iayi»1] . (2)

We concatenate these new vectors as rows in a data matrix X,,. From this, the
scatter matrix M is calculated as:

M=XEXe. (3)

The generalized eigenvalue problem is solved using singular value decomposition
(SVD) on the inverse of the scatter matrix, M ~1:

U,S,V =SVD(M™1). (4)

The first column of U are the coefficients of the ellipse: A, B,C,D,E,F =U. ;.
While the implicit parametrization uniquely describes each ellipse, error calcu-
lated in these parameters does not nicely correspond with intuitive notions of
geometric error (e.g., Hausdorff differences between curves in the image plane).
Thus, we convert coeflicients to the standard parameterization. The center (x,y)
of the ellipse is:

c-D-2.F A-E-Z.D

2 (@7 -a-0)" 2 (&) -ac)

For ease of notation, we can define a series of auxiliary variables:

Tr =

()

1
_A-x2+2-§-x-y+0-y2—F

I ; (6)

and my; = pu-A, mpo=p- g, and mos = - C. The semi-major and minor axes
a and b are expressed in terms of these variables:

1
a=- - (7)
3 (m“ +mag + /(M1 —maz)? +4- m12>
1
b= . (8)
1 2 P)
5 (mu + Moz — \/(mu —ma)?+4- mlg)
The orientation of the ellipse is calculated as:
1 B 1
a2~atan2<2~2,C’A>><78TO, (9)

and the parameters £ = (z,y, a,b, ) are the output of the process.
Importantly, the entire ellipse fitting is fully differentiable, as each step con-

sists of differentiable operations. This enables gradient-based optimization, let-

ting the parameters to be refined iteratively within an optimization framework.
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Distance from Origin = 0 Distance from Origin = 50 Distance from Origin = 100

0O 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50
Ground Truth 6 Ground Truth 6 Ground Truth 6

. Orthographic Proposed mmmm Ground Truth

Fig. 2. Comparison of 6 estimation on proposed and orthographic projection [9] in
the simulated environment. From left to right, experiments were conducted when dis-
tance from the origin to the object, (k,!), increases from 0, 50, and to 100 mm, while
other parameters were fixed. The peak at distance = 0 occurs as § — 0, which causes
numerical instability as the ellipse collapses to a line.

2.2 Forward Model: 3D-Pose to the Image Plane

We start with landmark S, which are points in a circle in a standard position,
ie., (0,¢,k,1) = (0,0,0,0), at a mean distance h along the extraplanar axis.
The source is placed at height H above the detection plane. Importantly, by
convention, § = 0 is orthogonal to the image plane (“zero ante/retroverson” in
THA), so z; = rcos (%) ,Y; = 0,2; = h + rsin (%) for n landmarks. The
landmarks are rotated in 3D space by rotation matrix R:
cosp —sinp 0 1 0 0
R(0,9) = | sing cose 0] | 0cosf —sinf | . (10)
0 0 1 0sinf coséd

By convention, we rotate by 6 first, so as to avoid specifying the extra-planar
rotation axis. The landmarks are then rotated and translated to ST, and pro-
jected to the 2D image plane:

0 et 0

By using S’P, we can fit another ellipse E with parameters = (%,9,a, 137 Q).
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Table 1. Quantitative results of pose estimation on the simulated environment (top)
and Implant CT (bottom) were evaluated using Hausdorff Distance (HD), registration
time, and mean absolute rotation and translation errors. Mem. indicates the maxi-
mum GPU memory required for 2D/3D registration on 640 x 640 images, with “~”
for CPU-only cases. DIV marks where large in-plane spatial separations caused metric
failure, as HD is highly sensitive to such differences.

Method Mem. HD |Time (s)0 err (°)¢ err (°)|k, err (mm)/h err (mm)
Orthographic [9] - — 5.46 2.18 - —
Proposed 1.44 |1.07 0.27 0.61 0.33 1.44
Intensity [6] 44 GB |71.02]139.78 |19.79 |78.38 21.20 208.12
Embedding [5] |42 GB DIV 286.25 |18.21 (38.20 |71.02 207.78
Proposed 6.91 [1.21 1.53 2.16 1.12 9.76

Seg. + Proposed|0.4 GB|11.21/3.48 3.93 2.56 1.76 16.93

2.3 Loss Calculation and Optimization

We measure ellipse-to-ellipse distortion (Fig. 1(c)) using the mean squared error
between parameter sets £ = (x,y, a,b, &) and the estimate &.

1 N
L= N;(&—&) , (12)

The error in the angular elements «a are adjusted to account for angular peri-
odicity, ensuring that discrepancies are correctly calculated by using min((« —
&)?, (180 — | — &|)?). We then minimize the loss £ by iteratively updating the
parameters (0, @, k, [, h) using an analytical gradient computed through auto-
matic differentiation (Fig.1(d)), iterating until convergence.

3 Experiments

Experiments were conducted in three distinct environments: Numerical Simula-
tion, Implant CT, and Cadaver CT. For each of these environments, the pose
parameters were uniformly sampled for each trial point: Anteversion (0) was
sampled from the interval (0,50) degrees (based on the “safe zone” in implant
anteversion [1,8]), inclination (¢) from (—90,90) degrees, in-plane translation
(k,1) from (—100,100) mm, and extra-planar translation (h) from (100, 520) mm.
Projections onto the 2D plane were then simulated for the given pose parame-
ters. All the experiments were conducted with source-to-detection distance (H)
set to 1040 mm.

For optimization, post estimate variables were initialized to a “first best
guess”: (éo,g&o,l%ojo,ﬁo) = (25°,40°, BE,, BEy, (1 — B)H) where E, and E, is
the center coordinates of the observed ellipse E, and § is the ratio between the
radius of the implant » and major axis E, of the observed ellipse.
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Simulated: Mean Rotation Error vs Distance Implant CT: Mean Rotation Error vs Distance

i
A~ OO o O

MAE (degree)

N

0 25 50 75 100 125 0 25 50 75 100 125
Distance (mm) Distance (mm)

mmm Proposed, 6 Error =mmm QOrthographic, @ Error  =ssm Seg. + Proposed, 8 Error
mmsm Proposed, ¢ Error  =mmm Orthographic, ¢ Error === Seg. + Proposed, ¢ Error

Fig. 3. Mean absolute error (MAE) of 6 and ¢ as a function of the distance from the
origin to the object, (k,!). Experiments were conducted in the synthetic environment
(left) and the DRR environment (right). # and ¢ indicate the experiments where each
parameters were fixed. Results from intensity and embedding-based registration for
implant CT was excluded due to high error.

For each of the environments, S* construction differs: In the Numerical
Simulation environment, landmarks S* were directly projected to the image
plane, i.e., no label or image noise was added for that experiment. For the
Implant CT experiment environment, images were generated from CT of an
implant outside of tissue using DRR methods. Two separate sub-experiments
were conducted by extracting landmarks S either by manually annotating land-
marks in the CT and projecting them to the image plane, or, reflecting a more
realistic scenario, training a U-Net [11] to segment the ellipsoidal area in the 2D
image, the boundary of which are used as landmarks S*. In the Cadaver CT
environment, 5 cadavers were given THA procedures and then imaged using
CT. Simulated 2D imaging was then collected via DiffDRR, from which S
were annotated. Each cadaver has both Left and Right joint replacements.

We use the Numerical Simulation environment to validate the perspective
projection over the orthographic projection methods [9]. For the Implant CT
environments we compare the performance of the proposed method to cur-
rent 2D/3D image registration methods, either intensity-based [6] or embed-
ding/feature based [5]. We use the cadaver CT to demonstrate the viability of
the proposed method in imaging conditions with real tissue.

4 Results

Numerical Simulation: As shown in Table 1, our method achieved 6 and ¢
MAE of 0.27 and 0.61 degrees, respectively. In contrast, orthographic projection
had 6 and ¢ errors of 5.46 and 2.18 degrees. Figure 2 further illustrates how
orthographic projection caused increasing distortion, while the proposed method
remained robust even as the implant moved away from the center.
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Table 2. Quantative results on Cadaver CT using the proposed method showing the
viability of the method in real surgical environments.

CadaverImplant HD Time (s)|0 err (°)/p err (°)k,! err (mm)h err (mm)
C1 L 2.18/1.08 0.92 0.22 0.48 3.33
R 6.26/1.09 1.23 0.31 1.62 8.77
C2 L 3.59|1.09 0.38 0.64 0.73 6.07
R 0.24/1.12 0.52 1.37 0.65 1.42
Cc3 L 2.58|1.08 0.25 0.97 0.58 4.63
R 2.72|1.08 0.39 0.43 1.55 5.61
C4 L 3.67/2.86 0.05 1.51 1.26 8.48
R 2.22/1.08 0.28 0.84 1.56 5.86
Ch L 6.94(1.07 0.46 0.31 0.56 6.28
R 0.70/2.18 0.22 0.87 0.84 0.15
Mean 3.11]1.38 0.47 0.75 0.99 5.07

Implant CT: As shown in Table1, the proposed method successfully regis-
tered the cup with an average HD of 6.91 pixels in just 1.21s. Other errors
remained within 1.53 and 2.16 degrees, 1.12 and 9.76 mm for (6,3, (k,1),h).
Incorporating a segmentation model led to slightly higher errors due to minor
mis-segmentations, but still outperformed other 2D/3D registration methods
which failed to register correctly while consuming up to 287s. The robustness
of our method is also shown in Fig.3, where estimation errors remain consis-
tently low across varying distances. Moreover, this method operates entirely on
the CPU, and even with segmentation, it only requires 0.4 GB of GPU memory,
making it practical in the operating room with minimal hardware requirements.

Cadaver CT: As shown in Table2, our method successfully registered to
implants in cadaver data, achieving a mean HD of 3.17 pixels with an average
registration time of 1.38s. The improved performance on cadaver data com-
pared to implant images is due to the clear visibility of ellipses in the DRRs of
implants in the cadaver. In contrast, the implant CT environment include cases
where ellipses are barely visible, leading to higher HD values and errors.

5 Discussion and Conclusion

This work presents an efficient and precise method for hip implant orientation
estimation in THA, proving it as an advantageous and important special case of
the broader inverse problem in projective geometry. While general solutions, such
as those by Uneri et al. [15], require iterative forward estimations, our approach
analytically solves the forward operation, significantly improving computational
efficiency. Similarly, landmark registration methods [7] often rely on explicit
correspondences between landmarks, which we solve by applying ellipse geometry
instead of imposing artificial correspondences as in ICP methods [3].
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By integrating perspective projection and ellipse fitting from landmarks, our
method reduces computational inefficiency, achieving near real-time processing
while mitigating projection distortions, particularly as the implant gets further
from the image center. The high accuracy demonstrated in test cases on cadavers
confirm the robustness of this approach in real surgical conditions. Furthermore,
the differentiability of the ellipse fitting process allows for its integration into
learning-based frameworks, such as deep neural networks. This facilitates the
incorporation of data-driven refinement strategies, potentially enhancing pose
estimation accuracy through end-to-end optimization.
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Abstract. Due to the complexity of 12-lead signals, the diversity of
cardiac conditions, and the semantic gap between waveforms and clin-
ical language, existing large language model (LLM)-based electrocar-
diogram (ECG) report generation remains challenging. In this paper,
we propose a novel approach to ECG report generation through diag-
nostic knowledge-enhanced prompt learning. Specifically, a knowledge-
aware module is constructed to extract waveform features and diagnostic
cues via multilabel classification. These clinical semantic features are
then fused with textual descriptions to form input prompts, thereby
enhancing the semantic richness of the prompts. Moreover, by incorpo-
rating signal augmentation to capture fine-grained waveform semantics,
we perform both intra-modal and cross-modal alignment between high-
dimensional ECG signals and the generated text during model train-
ing, thereby improving the accuracy and relevance of report generation.
A constraint-aware loss is further introduced to ensure the inclusion
of essential diagnostic elements. Experiments on benchmark datasets
demonstrate that our proposed method achieves superior performance
on natural language generation metrics (e.g. BLEU, CIDEr-D), validat-
ing its effectiveness in both generation accuracy and clinical relevance.
The code is available at: https://github.com/pangpanqiqi/ECG-Report-
Prompt.

Keywords: ECG Report Generation - Clinical Knowledge
Integration - Prompt Learning

1 Introduction

ECG is a widely used, non-invasive modality for assessing cardiac electrical
activity and plays a central role in the early detection of cardiovascular dis-
eases (CVDs), the leading cause of global mortality [5]. The growing volume
of ECG exams, combined with a shortage of trained cardiologists, has strained
manual interpretation workflows, leading to diagnostic delays, misinterpreta-
tions, and reporting backlogs, especially in resource-constrained settings [6,7].
To address these challenges, recent efforts have explored automated ECG report
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generation from raw signals, aiming to improve efficiency and consistency [17,22].
Robust, scalable ECG reporting systems are thus essential for advancing timely
and equitable cardiovascular care [17].

ECG report generation aims to translate complex temporal waveforms into
concise clinical descriptions, yet remains significantly underexplored compared to
classification tasks such as arrhythmia detection or risk prediction [15,16]. Early
approaches primarily relied on multi-task learning or template-based meth-
ods [20], often prioritizing linguistic fluency over diagnostic accuracy. More recent
efforts have introduced large language models (LLMs) for end-to-end genera-
tion [12,22], leveraging domain-specific prompts or retrieval mechanisms. How-
ever, these methods struggle to capture subtle waveform abnormalities and often
fail to generalize across diverse ECG patterns, leading to incomplete or clinically
inaccurate reports. In parallel, vision-language large models (VLLMs) [8,9,13,24]
and medical image report generators [2,3,10,21,23] have shown the potential of
prompt tuning and cross-modal alignment, but are limited to static images.
Existing ECG generation frameworks thus lack temporal sensitivity, reliability
estimation, and interpretability. As illustrated in Fig. 1, generic language models
often fail to capture rare or subtle ECG abnormalities, resulting in unreliable
reports.

Ground Truth:

Prediction: sinus rhythm position type normal qrs abnormal

There are right lower

L . anteroseptal myocardial dam cannot be ruled out
lobe opacities concerning Predictionl:
? Only LLM: rediction]:
for pneumonia sinus rhythm position type normal normal ecg
Task: Image To Text % insufficiently capture rare or abnormal information i
LLM | Prediction: LLM with Prediction2:
H f —_— [ S rhythm position prior knowledge:\ o, ythm location type normal
LN — type, Inferior/lateral ST- .
H T changes
Task: ECG Signals To Text Q/ identify anomalies more accurately
Task Comparison ECG-to-Report Generation: Generic LLM vs. Ours

Fig. 1. Comparison between image-to-text and signal-to-text generation tasks and
between a generic language model and our method, which leverages clinical knowl-
edge to better capture rare ECG patterns and improve accuracy.

To address these challenges, we propose a novel generation framework that is
clinically grounded and capable of generating coherent and diagnostically faith-
ful ECG reports. Our framework addresses two key problems. First, we bridge
the modality gap using cross-modal and intra-modal alignment strategies, with
contrastive learning and signal augmentation to capture fine-grained waveform
semantics. Second, we simulate the physician’s diagnostic process through a
dynamic prompting mechanism that integrates multi-label classification and
signal-derived metrics (e.g. heart rate, PR interval, QRS duration), guided by
clinical guidelines. Moreover, a constraint-aware loss penalizes the omission of
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Fig. 2. Overview of the proposed framework. ECG signals are first encoded into aligned
feature vectors via an ECG encoder. Clinical indicators and diagnostic labels are subse-
quently extracted and reformulated as textual prompts. A text decoder then generates
diagnostic reports guided by both the ECG features and the clinical prompts.

essential diagnostic terms, enhancing report completeness and clinical reliability.
Our main contributions are:

1. Physician-Workflow-Aligned Generation: Propose a novel ECG report
generation framework that mirrors cardiologists’ diagnostic workflows by
combining signal-based feature extraction with LLM-guided reasoning.

2. Clinical-Knowledge-Fused Prompting: Propose a prompting mechanism
that integrates clinical priors and multi-label classification with constraint-
aware loss to ensure inclusion of core diagnostic components.

2 Methods

In this section, we give a detailed introduction of the proposed framework.
The model consists of three main components: ECG-to-report feature align-
ment for modality bridging, clinical knowledge-aware prompt construction, and
cross-attention report generation, as illustrated in Fig. 2.

2.1 ECG-to-Report Feature Alignment for Modality Bridging

Cross-Modal Alignment. To bridge the modality gap between ECG signals
and textual reports, we adopt a cross-modal alignment strategy. A ResNet1D
encoder extracts temporal features from ECG signals X, € RT*P_ while
Med_CPT [4] encodes textual reports X; € RL*F. As shown in Fig.2, both
are projected into a shared embedding space via nonlinear mappings, yielding
Ze, 2z, € R?. We employ a symmetric contrastive loss to align ECG-text pairs by
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maximizing similarity between matched representations and minimizing it for
mismatched ones

1
Eetc. = §(£e—t + Et—e)a (1)
where
B .
1 exp (sim(2ze,;, 2t ;) /7)
Lot = —— log — (2)
B ; Zf:1 exp (sim(ze i,z j)/7)

)

)
Low= Z log exp (sim(zy 4, Ze’i)/T)) 3)

B .
B i=1 Zj:l exp (sim(z,i, Ze,;)/7)

where sim(-, -) denotes cosine similarity, 7 is a temperature parameter, and B is
the batch size.

Intra-Modal Alignment. To enhance the robustness of ECG representations,
we apply intra-modal contrastive learning, as shown in the EEC branch of Fig. 2.
To enhance temporal diversity, we employ signal-level augmentations such as
baseline drift simulation, random segment cutting, signal mixing, and temporal
masking. Positive pairs are created by applying two independent dropout masks
to the same signal embedding z. ;

z’ Zo; O M, z2 Zo; O M2, (4)

et e,i

where M', M? are independent binary masks drawn from Bernoulli(p), with
p = 0.1. The element-wise multiplication (®) generates two stochastic views of
the same embedding. The contrastive loss encourages alignment between the two
masked views while pushing apart different samples

B : 1 2
1 exp (snn(ze irZe z)/T)
£eec = 75 log ; :
PSS

i1 €XD (Sim(z;i, zij)/T)

(5)

2.2 Clinical Knowledge-Aware Prompt Construction

To enhance interpretability, we construct structured prompts by coupling ECG
biomarkers with clinical semantics (Fig. 2), including pathology classification and
quantitative ECG analysis.

Pathology Classification Prompts. A ResNet1D-based multi-label classifier
identifies diagnostic patterns from ECG signals X, € RT*P | producing label
probabilities ¢, € RM

gé = J(MLP(ERGSNEtlD (Xe))) (6)

Each predicted label ¢! is mapped to a standardized diagnostic term using a
predefined mapping dictionary. For example, “AFIB” is converted to “Atrial
Fibrillation”. These mappings, derived from expert-defined templates, serve as
semantic priors to guide the report generation process.
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Quantitative Analysis Prompts. Numerical features, such as heart rate, RR
interval, and PR interval, are extracted using NeuroKit through signal denoising
and waveform segmentation. These metrics, combined with domain rules, are
embedded as prompts to guide report generation. For instance, irregular RR
intervals may suggest conduction disorders such as AV block.

2.3 Dynamically Constrained Report Generation

We generate diagnostic reports using a BERT decoder with causal self-attention
and a cross-attention mechanism that incorporates ECG embeddings X and
prompt features D (diseases) and C (clinical indicators).

Fo——————————— P issirnbraesiasiienh |
| Disease concept:ecg report's discriptions may |

| present inferior myocardial infarction;left |
|
| Clinical indicators:clinical diagnosis data |—>
|

\atril ...

UONUINY $S01D)
pIemiog pasg

Iinc/udes heart rate:77.0, pr interval,pr : ;
| interval..... g
| :sinus rhythm left type qrs abnormal : e
Linferior myocardial...... |2

NVJI9S [esne)

Fig. 3. Cross-attention module: Fuses ECG embeddings with prior prompts to enhance
context-aware report generation.

At each decoding step, the model integrates both previously generated tokens
and multimodal context to ensure clinical relevance. As illustrated in Fig. 3, the
cross-attention module fuses ECG signals with structured prompts to enhance
context-aware report generation. The training objective is defined as

T
Lim ==Y logp(yi | y<, X, D, C). (7)

t=1

To promote inclusion of key diagnostic terms, we introduce a soft constraint loss.
Given target terms 7 = {t1,...,tx}, we define

1<j

K
1
Sk = m_agXij (tk)v Lconstraint = _g I; IOg(Sk)' (8)

This differentiable loss encourages high token probabilities for essential clini-
cal terms. The overall training objective combines alignment, generation, and
constraint components

1
Etotal = acetc. + ﬂceec + A/(Elm + §£constraint)~ (9)

The proposed method includes two training stages. In the alignment phase,
the model is pre-trained on MIMIC-IV-ECG using a contrastive loss, where ECG
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signals are encoded by a ResNet1D network and textual reports by the Med-CPT
model. In the generation phase, the model is fine-tuned on PTB-XL using a joint
loss combining alignment and generation objectives. During inference, aligned
ECG features are fused with prior prompts via a cross-attention mechanism, and
the fused representation is decoded by a BERT-based decoder.

3 Experiments

We use MIMIC-IV-ECG dataset [1] and PTB-XL dataset [19]. After prepro-
cessing, 771,693 ECGtext pairs were retained. PTB-XL dataset includes 21,837
10-second ECG recordings from 18,885 patients, each with a free-text report. It
supports four multi-label tasks: Superclass, Subclass, Form, and Rhythm. We
adopt the AdamW optimizer with an initial learning rate of 0.0001 and a batch
size of 16. The hyperparameters «, 3, and v are set to 0.4, 0.1, and 0.5, respec-
tively. To enhance generation quality and diversity, we set the temperature to
0.7, top-p to 0.8, and the repetition penalty to 1.0. All experiments are imple-
mented in PyTorch and conducted on a single NVIDIA A100 GPU.

3.1 Comparison Study

Comparison with State-of-the-Art Methods. We compare our model with
existing approaches using BLEU (1-4) [14], ROUGE-L [11], and CIDEr-D [18].
BLEU measures n-gram precision to assess fluency, ROUGE-L captures con-
tent overlap and sequence coherence, and CIDEr-D reflects clinical relevance
based on TF-IDF weighted similarity. These metrics jointly evaluate the qual-
ity of generated ECG reports. As shown in Table 1, our method achieves supe-
rior performance across all metrics, notably in BLEU1 (0.432) and CIDEr-D
(2.509), highlighting its ability to generate accurate and informative reports. The
improved results can be attributed to our use of diagnostic labels to construct
constraint-aware prompts. This guidance helps the model attend to clinically
relevant information, enhancing both the fluency and diagnostic consistency of
the generated reports.

Table 1. Performance comparison of different methods on six evaluation metrics

Method BLEU1BLEU2BLEU3BLEU4 ROUGE-L|CIDEr-D
Cross-modal Transfer (2023) [0.260 |- - - -
MEIT (GPT2-Medium) (2023)(0.329 0.278 |0.254 [0.232 (0.391 2.120
ECG-Chat (2024) 0.323 |- - 0.110 0.300 —
Ours 0.432 |0.352 |0.299 |0.263 |0.512 2.509
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Comparison of Language Model Backbones. We compare five backbones:
BERT, GPT2-M, GPT2-L, LLaMA-2 (LoRA-tuned), and ours. ECG features are
embedded into the first token, guided by a unified instruction prompt. ours incor-
porates structured clinical terms for fine-grained knowledge injection. Owing
to its bidirectional nature, BERT better exploits diagnostic prompts, while
autoregressive models (GPT, LLaMA) are less effective. Compared to autore-
gressive models, our work benefits from its bidirectional attention, which enables
comprehensive understanding of the input prompt and downstream content.
When guided by structured diagnostic terms, BERT can better align token-level
representations with medical semantics, resulting in more precise and relevant
outputs. As shown in Fig. 4, ours achieves the best overall performance. Quali-
tative results (Fig. 5 and Fig. 6) further show that it produces more detailed and
clinically accurate reports compared to the vaguer outputs of other models.

NN BERT e GPT2-M SN GPT2L MEE LlaMA2 WM Ours
BLEU-1 BLEU-4 ROUGE-L CIDEr-D

& g0t ot ot &gt ot o L &gt @ e

Fig. 4. Performance comparison of different language model backbones.

Generated Report:
GPT2-M: Sinus rthythm position type normal normal ecg$g
GPT2-L: Sinus rhythm location type normal qrs abnormal anteroseptal infarction 3§
LLaMA-2: Sinus rhythm location type normal qrs abnormal anteroseptal infarction probable old inferior
infarction probable old t abnormal in high lateral leads $
Qurs: Sinus rhythm location type normal qrs abnormal anteroseptal myocardial dam cannot be ruled out Q/
Ground Truth: Sinus rhythm position type normal qrs abnormal anteroseptal myocardial dam cannot be ruled out

Fig. 5. Example outputs of ECG report generation from different models. Orange and
cyan highlight descriptions are consistent with the ground truth. (Color figure online)

3.2 Ablation Study

Effect of Prompt and Constraint Loss on Report Quality. We evaluate
three settings: no prompt, prompt only, and prompt with constraint loss. As
shown in Fig. 7 (a), prompts significantly enhance performance by guiding gen-
eration, while the addition of constraint loss further improves factual accuracy
and clinical relevance.
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Generic LLM Ground Truth Ours
ECG signal sample 1 Sinus rhythm Priors: The ecg diagnostic rules include several
Sinus rhythm position type Sinus thythm ||, hyperextended left " key indicators. the normal range for the pr
normal normal ecg = 11ypm;cxlcndcd left type lefté=r=> ‘YPe_l"-ﬂ anterior jnterval is 0. 12 to 0. 20 seconds......
anterior hemiblock hemiblock Ecg report's discriptions may present lafb / Ipfb.
ECG signal sample 2 Atrial fibrillation

Priors: The ecg diagnostic rules include

Tachycardic atrial fibrillation Atrial fibrillation with rapid with rapid OvE
location type normal st & t ventricular response. low limb ventricular several key indicators. the normal range for the
S lead volt. st segme - 2% “ printerval is 0. 12 to 0. 20 seconds......
abnormal, probable ead volt. st segments are response. st E s discripti L inferi
anterolateral ischemia or left depressed in ii, v2-6. findings segments are K repg. lS. ;SCH[.) lmfs may pres.et:] inierior
strain inferolateral is are likely to be due to depressed in i, i, n:|yocar .1a AT EREREN 5 MM = eI
ischaemic heart disease. avl, v4,5,6 itk i,

Fig. 6. Qualitative examples of the generic LLM and the proposed method. Green text
indicates correct content generated by both models, while red text highlights correct
details unique to ours. (Color figure online)

Prompt Robustness across Evaluation Metrics
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(a) Performance comparison under dif- (b) Performance comparison under vari-
ferent configurations ous prompts

Fig. 7. Impact of model configuration and prompt design on diagnostic report gener-
ation.

Table 2. The classification performance on the PTB-XL dataset

Category |AUC (%)|Acc (%) F1-Score (%)
all 93.5 97.9 72.1
sub_diag |91.6 96.5 67.4
super_diag|92.7 88.5 75.8
form 88.0 94.5 50.8
rhythm |90.4 89.9 49.8

Stability Analysis Under Label Perturbation. To incorporate structured
prior knowledge, we perform multi-label classification on the PTB-XL dataset
to extract 71 diagnostic, rhythm, and morphological labels using a ResNet1D
model. Each classification task is evaluated independently using AUC, accuracy,
and F1 score, as summarized in Table 2.

To further evaluate the stability of our framework under label perturbation,
we compare report generation results using prompts constructed from either
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ground-truth or predicted diagnostic labels. As shown in Fig.7 (b), the two
settings yield highly similar outputs, demonstrating the robustness of our prompt
construction strategy.

4 Conclusion

In this paper, we propose a prior-driven ECG report generation framework that
integrates multi-modal alignment and clinical prompt engineering. By aligning
temporal ECG features with textual semantics and introducing dynamic con-
straints, our method significantly improves the accuracy and clinical relevance of
generated reports. Extensive experiments demonstrate consistent gains across
BLEU and CIDEr-D metrics, validating the effectiveness and practical potential
of our approach.

Despite promising results, this study remains at the algorithm validation
stage. To assess generalization to out-of-distribution (OOD) data, we plan to
conduct prospective clinical trials with partner hospitals. In addition, the cur-
rent framework requires further optimization for real-time deployment. These
findings highlight the potential of structured prior knowledge and prompt design
to enhance the reliability and interpretability of automated report generation.
In future work, we aim to further improve the computational efficiency of the
model and expand its application scope to other medical domains, offering a more
generalizable and scalable solution for multi-modal medical report generation.
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Abstract. Recent advances in multimodal deep learning have success-
fully begun to link molecular data with tissue morphology. To date,
this work has largely focused on transcriptomics, a limited surrogate
for protein expression. The direct prediction of proteins, the functional
endpoints of gene expression, remains underexplored, largely due to the
difficulty in generating spatially resolved proteomic data. Early efforts
to predict proteomic data from tissue morphology were hindered by
low specificity and limited multiplexing capacity, constraints inherent to
immunohistochemistry and multiplexed immunofluorescence techniques.
This proof-of-concept study presents a novel data generation pipeline to
address these throughput and specificity challenges and decode the pro-
teome from H&E slides via high-throughput tile-level mass spectrome-
try profiling. This approach enables a direct one-to-one correspondence
between histological features and proteomic measurements, which is an
essential prerequisite for training robust foundation models.

By applying this pipeline to gastric cancer biopsies, the study demon-
strated that morphologically distinct clusters corresponded to distinct
proteomic profiles. Notably, tumor regions were enriched for clinically
relevant markers such as HMGB1, LGALS3, and ERBB2, all of which
are associated with poor prognosis.

This work establishes the foundation for a new generation of Al-driven
proteomics, demonstrating that routine histological images contain suffi-
cient information to predict thousands of proteins across diverse biolog-
ical conditions. TileDVP represents a paradigm shift toward accessible,
high-throughput spatial proteomics that could transform biomarker dis-
covery and precision medicine applications.
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1 Introduction

Recent advances in multimodal deep learning have demonstrated the feasibility
of integrating transcriptomic and spatial transcriptomics data with morpholog-
ical features extracted from hematoxylin and eosin (H&E)-stained whole slide
images (WSIs). These methods demonstrate that morphological features can par-
tially predict RNA-sequencing signatures. While advances in genomics and tran-
scriptomics have significantly expanded our molecular understanding of disease,
proteins—which represent the functional endpoint of gene expression and are the
most clinically actionable molecular markers-remain underexplored as targets for
direct prediction from tissue morphology in the deep learning community.

Immunohistochemistry (IHC), the standard method for assessing protein
expression, is limited by interpretative variability and low multiplexing capacity.
In gastric cancer, for example, HER2 protein, encoded by the ERBB2 gene, is
a key prognostic and predictive marker; however, IHC shows poor agreement in
equivocal (2+) cases due to inter-observer variability and staining heterogeneity
[18]. To overcome these limitations, mass spectrometry (MS)-based spatial pro-
teomics offers a multiplexed and quantitatively robust alternative. In particular,
Deep Visual Proteomics (DVP) allows for high-depth, spatially resolved protein
profiling and robust biomarker discovery across thousands of targets, offering a
powerful new avenue for precision medicine applications [8,9,12,15].

We present a scalable proof-of-concept pipeline that directly links H&E tissue
morphology to spatially resolved proteomic data through DVP. Applied to gas-
tric cancer biopsies, this approach yielded over 600 tile-level measurements with
one-to-one correspondence to histological features, offering a high-depth alter-
native to IHC, multiplexed immunofluorescence (MIF), and RNA-based infer-
ence by targeting proteins—the direct and druggable effectors of cellular func-
tion (Fig.1). The main contributions of this work are fourfold: (i) we present
a generalizable pipeline for MS-based spatial proteomics, termed TileDVP, a
derivative of the DVP approach; (ii) we introduce an Al-based tile selection
strategy that maximizes morphological diversity; (iii) we provide a foundation
for cross-modal analysis between the proteome and H&E tile morphology, includ-
ing predictive modeling and intra-tumor heterogeneity assessment; and (iv) we
investigate which proteins are predictable from histology, highlighting the chal-
lenges of mapping protein abundance onto tissue architecture.

2 Related Work

2.1 Predicting Gene Expression from H&E

Pioneering models, such as ST-Net [5] and Path2Space [17], demonstrated that
simple CNN or MLP architectures can predict RNA-seq profiles from H&E
morphology, showing that transcriptomic signals are partially encoded in tis-
sue architecture. However, most models were trained on small cohorts, often
fewer than 25 patients, which limits generalizability [2]. Importantly, the field is
now transitioning from shallow encoders to spatially aware architectures, such as
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Fig. 1. Tile-level Deep Visual Proteomics workflow. A) H&E-stained tissue
sections are imaged. B) Digitized images are tiled and embedded in the H-Optimus-0
latent space, where unsupervised clustering finds morphological groups per patient. C)
From each slide, approximately 200 representative tiles are selected to cover a variety
of morphologies, while maximizing intra-cluster variance. D) The corresponding tile-
shaped tissue regions are isolated by laser-capture microdissection, and proteomes from
600 tiles were acquired with an Orbitrap Astral mass spectrometer.
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Vision Transformers [3] and Graph Neural Networks [4,14]. These more complex
models could benefit from larger and more diverse datasets, such as HEST-1K
[6]. Extending predictions to proteins, given their link to tissue function and clin-
ical outcomes, and developing scalable pipelines for spatial proteomics histology
data is the logical next step.

2.2 Predicting Proteins from H&E Stained Tissue

Among the few studies specifically targeting spatial proteomics, DeepS4P [11]
proposed a deep learning-guided sparse sampling strategy to reconstruct pro-
teomic maps from limited MS measurements. DeepS4P [11] employs an untar-
geted grid-based sampling method. By sampling parallel tissue strips and apply-
ing a multilayer perceptron to infer unsampled regions, DeepS4P demonstrates
how deep learning can expand sparse proteomic coverage. However, this untar-
geted approach does not incorporate morphological features of tissue to guide
sampling.

2.3 Evaluation Metrics

Performance reporting in spatial omics also faces methodological challenges.
Most models report the Pearson correlation coefficient (PCC) on highly
expressed genes, which inflates performance by favoring easier-to-predict targets
and often overlooks biologically significant extreme values—the outliers that fuel
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biological discovery—which tend to be under-predicted and have little impact on
global PCC values. Instead of focusing on highly expressed genes, MISO [14] pro-
posed using spatial autocorrelation as a more biologically meaningful criterion.
Continuing in this direction, we investigated which proteins are more tractable
to predict from H&E-stained tissue, acknowledging that not all proteins are
independently correlated with distinct morphological features.

These methodological limitations highlight the need for a new pipeline capa-
ble of generating spatially resolved, high-depth proteomic data, as enabled by
TileDVP.

3 Materials and Methods
3.1 Overview of Deep-Visual-Proteomics

DVP, a spatial proteomics method, integrates high-resolution histology, laser
microdissection, and ultra-sensitive MS to generate spatially resolved proteomic
maps. In this study, we introduce TileDVP, a variant of DVP that profiles pro-
teins on individual excised tissue squares. Instead of operating at the cell phe-
notype level, this adjustment enables a direct, localized comparison between
image-level histological features and protein composition and thus directly sup-
ports the use of foundation model embeddings. In our biopsy-section experi-
ments, TileDVP preserved the proteomic depth of traditional DVP, quantifying
an average of 3,989 proteins per tile (Table S1) [8], across approximately 200
tiles measured per patient, and maintains a broad spatial coverage (Fig.1).

3.2 Patient Cohort and Imaging

Three gastric adenocarcinoma core needle biopsies (S001, S005, S008) were
collected at Copenhagen University Hospital, Rigshospitalet. For all samples,
ERBB2 status was confirmed by IHC, given its clinical relevance for prognosis
and targeted treatment with trastuzumab [18] (see Supplementary Methods).

3.3 Morphology-Guided Tile Selection

For computational analysis and after background removal, tissue sections were
processed into non-overlapping tiles (55 x 55 pum at 0.19 mpp) to retain essen-
tial cellular-scale morphological information and context without compromising
the integrity of the proteomic signal. Morphological embeddings were computed
using H-Optimus-0, a ViT-B/16 foundation model trained on over 10 million
histology tiles [13]. The last layer of this model produces a 1,536-dimensional
normalized embedding vector for each tile, which served as the input for clus-
tering, selection, and predictive modeling. We optimized MS sample selection
to cover broad tissue diversity. To this end, embedding vectors from all three
patients were independently clustered using K-means, initially generating 30
distinct morphological groups. After manual removal of artifactual clusters such
as background and blurry regions, 12 biologically relevant clusters remained.
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For each cluster, we applied outlier filtering based on tile-to-cluster-center dis-
tance. To maximize morphological diversity, we partitioned each cluster into
a fixed number of quantiles based on each tile’s distance from the cluster cen-
troid, then sampled tiles from each quantile to maximize within-cluster variance.
To minimize spatial redundancy, we enforced a minimum distance of 150 pm
between any two selected tiles. Approximately 200 MS samples per patient (~16
tiles per cluster) were selected for downstream MS analysis. Overall, the tile
selection strategy ensures a diverse representation of tissue morphology while
maintaining spatial coverage across the tissue (Fig.1).

3.4 Modeling Strategy and Evaluation Metrics

To quantify congruence between proteomic and morphological modalities, we
projected KNN-imputed proteomic measurements onto a two-dimensional space
computed with UMAP and overlaid morphological clusters obtained with k-
means (k = 6). These clusters were computed from H-Optimus-0 embedding
vectors of all acquired H&E tiles, across all patients, in contrast to previous
clustering. The number of clusters (k) was set as small as possible to retain simple
morphological groups, based on feedback from a pathologist. We then measured
concordance as the ratio of inter- to intra-cluster distances (see Supplementary
Methods).

To predict proteomic expression from histology, we used univariate XGBoost
regression, leveraging its performance with scarce data and its ability to handle
non-imputed MS measurements directly. Owing to pronounced inter-patient pro-
teomic variability, we trained an independent regression model for each protein
within each patient. Cross-patient modeling was not feasible unless the cohort
size was substantially increased. XGBoost received H-Optimus-0 tile embed-
dings as input, without further external normalization. The output corresponds
to the log2-normalized, experimentally measured protein abundance for each
tile. Model performance was evaluated using the Pearson correlation coefficient
(PCC), mean absolute error (MAE), and the coefficient of determination (R?)
between predicted and observed protein levels. We investigated whether a pro-
tein’s spatial organization affects how well it can be predicted from morphology.
We measured this organization using Moran’s Index, where positive values indi-
cate spatial organization and near-zero or negative values suggest random pat-
terns. We hypothesized that proteins exhibiting positive spatial autocorrelation
would be more amenable to morphology-based prediction.

4 Results
4.1 Quantitative Results

To assess the feasibility of predicting MS protein intensities from H&E-stained
tiles, we examined the alignment between morphological and molecular identi-
ties. Our analysis revealed that tiles closely positioned in the molecular embed-
ding space generally shared similar morphological characteristics. This concor-
dance is visually represented by the shared color of neighboring points (Fig. 24A).
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Fig. 2. Prediction of MS protein measurements from morphology. A) UMAP
projections of imputed MS protein intensities for three gastric tumor samples. Points
represent tile-level MS measurements colored by morphological clusters (k = 6, via
K-means clustering). B) Volcano plot with logs fold changes in protein abundance
comparing cluster 1 (non-tumor) versus all other clusters. Highlighted points indicate
proteins significantly differentially expressed (FDR < 0.05, —FC— > 2); counts of
down- and up-regulated proteins are provided in the title. The ten most up-regulated
proteins are labeled. A random selection of four tiles from cluster 1 are shown. C)
Similar to B, differential expression analysis of tumoral Cluster 2 highlights ERBB2
overexpression (F'C = 2.5) for reference. D) Cumulative distributions of PCC from
univariate XGBoost classifiers trained individually per sample. Vertical dashed lines
indicate mean PCC values. E) Coefficients of determination from univariate linear
models predicting PCC based on: (i) protein presence ratio, (ii) mean logs protein
expression, and (iii) Moran’s I spatial autocorrelation index. F') Violin plots comparing
PCC distributions by protein spatial organization (positive vs. negative Moran’s I).

Consequently, tiles within the same morphological cluster tend to group closely
within the molecular embedding space, with an average inter-/intra-cluster dis-
tance ratio of 3.1 (range: 1.1-7.6), significantly higher than expected under ran-
dom cluster assignments (permutation test, p < 0.005 for all samples).
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The defined morphological clusters correspond to visually distinguishable
morphologies (Figure S1). Clusters 3 and 4 demonstrated limited interpretabil-
ity: cluster 3 primarily included out-of-focus tiles, and cluster 4 was exclusive
to sample S001. Clusters 1 and 5 predominantly represented non-tumor areas,
as evidenced by their lower expression of EPCAM [19]; in contrast, clusters
0 and 2 were identified as tumoral (Figure S2). These morphological clusters
each present distinct protein expression profiles (Fig. 2B-C, S3, S4). Non-tumoral
Cluster 1 exhibits overexpression of extracellular matrix and fiber-related pro-
teins (Figure S4), typical of such regions. Conversely, cluster 2 comprises tumoral
tiles (Figure S1) and is defined by a proteomic profile enriched in markers asso-
ciated with poor prognosis in gastric cancer—such as HMGB1 [20], LGALS3 [10],
SERPINBI [7], and notably ERBB2 [1] (Fig. 2C). Figure 2D demonstrates that
morphology alone provides a robust signal for proteomic prediction. Univariate
models achieved a mean PCC of 0.27, a mean MAE of 0.11, and a mean R? of
~0.09 across all proteins, with 40% of proteins exhibiting a positive R?. For com-
parison, models trained on permuted data yielded a mean PCC of —0.02, a mean
MAE of 0.13, and a mean R? of -0.39, with only 2.5% of proteins exhibiting a pos-
itive R?. The obtained values are comparable to transcriptomic benchmarks—e.g.,
TRIPLEX reports median PCCs of 0.29 (all genes) and 0.45 (top 250 genes)-with
the important caveat that our models are trained within-sample and not across
patients [3]. As with transcriptomic data, we hypothesize that not all proteins
are reflected in morphological features. Therefore, we investigated variability in
protein predictability and confirmed that both the protein-presence ratio (i.e.,
the frequency of detection across tiles) and the expression level significantly
influenced predictive performance. Consistent with MISO [14], we also found
that proteins exhibiting stronger spatial organization, and thus likely expressed
differentially across morphological entities, were associated with enhanced pre-
dictability (Fig.2E-F). Notably, we do not expect mass spectrometry data to
follow the same predictability profile as transcriptomics, given the differences
in measurement dynamic range between the two technologies. Given ERBB2’s
therapeutic importance [1] and its role in morphological cluster 2 (Fig. 2C), we
focused on predicting its expression.

4.2 Focus Around ERBB2

Our model performed well for samples S001 (PCC = 0.41) and S008 (PCC
= 0.76), but performance was limited for sample S005 (PCC = 0.01), which
exhibited low and sparse ERBB2 detection by MS (Fig.3A, B). Intriguingly,
the low MS signal and corresponding poor model performance for S005 mir-
rors its challenging clinical classification as an THC 24 (equivocal) case, which
required subsequent fluorescence in situ hybridization (FISH) analysis to be con-
firmed as positive. This stands in sharp contrast to the definitive statuses of S001
(IHC 1+, negative) and S008 (IHC 3+, positive) (Figure S8) [18]. Qualitatively,
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Fig. 3. Prediction of ERBB2 expression across samples. A) Scatterplot compar-
ing predicted and measured ERBB2 expression values (logz-transformed and min-max
scaled) for three different samples. Each sample was modeled independently, and PCC
are reported in the legend. B) Violin plots of normalized ERBB2 intensity values as
measured by MS for each sample. The FC values shown below each plot represent the
ratio of the sample mean to the global mean ERBB2 intensity. C) Qualitative spa-
tial analysis for sample S001. Left: H&E-stained WSI overlaid with tile-level ERBB2
measurements obtained by MS (blue = low, red = high, black = not detected). Cen-
ter: prediction heatmap of normalized ERBB2 intensities using the same color scale.
Right: corresponding ERBB2 IHC. D) Equivalent visual comparison for sample S008.
Below, a magnified region highlights local agreement between ERBB2 expression, as
predicted by tile color on the H&E overlay, and the corresponding THC signal. (Color
figure online)

extending our ERBB2 predictions to every tile in the WSIs provides a more
comprehensive characterization of intra-tumor heterogeneity than the inherently
sparse MS measurements. For sample S001 (IHC 14, ERBB2 negative), tiles
from morphological clusters 3 and 5 exhibit very low predicted ERBB2 inten-
sity, in agreement with MS data (Fig.3C, Figure S6). Conversely, for sample
S008, the best-predicted case, regions predicted to have high or low ERBB2
expression demonstrate near-perfect alignment with the corresponding THC stain
(Fig. 3D). In contrast, the very low prediction performance for sample S005 pro-
hibits meaningful interpretation of its WSI-level ERBB2 predictions (Figure S7).
These qualitative observations regarding ERBB2 suggest that morphology-based
predictions can significantly enhance our understanding of intra-tumor hetero-
geneity. This approach offers a promising avenue for other key proteins and also
highlights the critical role of MS measurements in resolving clinically ambiguous
cases.
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5 Discussion and Perspectives

The foregoing results demonstrate that routine H&E morphology harbors suffi-
cient information to predict thousands of spatially resolved protein abundances,
establishing TileDVP as a practical bridge between histology and proteomics [8].
This proof-of-concept study highlights how morphologically distinct clusters cor-
respond to unique proteomic profiles, for example, we identified a morphological
cluster enriched for clinically relevant markers with prognostic value, including
HMGBI1, LGALS3, and ERBB2 [1,10,20].

Our analysis confirmed that proteins with low detection frequency, expres-
sion, or spatial organization were less predictable, an expected outcome, as not
all proteins have strong morphological correlates. Nonetheless, future AT mod-
els leveraging MS-based proteomics could fully exploit the high sensitivity and
depth of this technique, enabling access to thousands of proteins. This provides
a powerful complement to approaches like the recent KRONOS experiment [16],
which demonstrated advanced spatial tissue profiling capabilities with impressive
multiplexing, yet remained limited in proteome coverage. Furthermore, because
MS-based proteomics fundamentally identifies proteins based on individual pep-
tides, it enables the direct detection of protein isoforms and post-translational
modifications, largely inaccessible to antibody-based methods.

The data generation pipeline is highly extensible and paves the way for large-
cohort, disease-agnostic studies. While the current cohort size precluded the
use of spatially aware models such as Vision Transformers [3] or Graph Neural
Networks [4,14], future large-scale datasets will enable their integration. These
architectures, proven in spatial transcriptomics, will help capture complex tis-
sue context. Further model refinement may incorporate contrastive learning to
improve robustness and focus on differential expression that drives biological
information. The generation of new data will help improve the generalizability
of models across patients, particularly given the relative rather than absolute
nature of protein abundance measurements in MS-based proteomics.

By scaling this data generation engine, we can build models that enhance the
interpretability of even sparse MS data and support Al-guided pre-selection of
molecularly relevant regions for targeted analysis. This work establishes the foun-
dation for a transformative shift in how we approach spatial proteomics, moving
from resource-intensive, specialized techniques to accessible, routine applications
that can be integrated into standard clinical workflows. Future developments will
focus on scaling to larger, more diverse cohorts and integrating advanced spa-
tial modeling approaches to further enhance predictive performance and clinical
utility.

Disclosure of Interests. All authors, except KE, are employees of OmicVision Bio-
sciences. KE, MD, has received funding and support from pharmaceutical and diag-
nostic companies and serves as Chairman of the Danish Society for Cyto- and Histo-
chemistry.
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Abstract. Precise delineation of meningiomas is crucial for effective
radiotherapy (RT) planning, directly influencing treatment efficacy and
preservation of adjacent healthy tissues. While automated deep learning
approaches have demonstrated considerable potential, achieving consis-
tently accurate clinical segmentation remains challenging due to tumor
heterogeneity. Interactive Medical Image Segmentation (IMIS) addresses
this challenge by integrating advanced Al techniques with clinical input.
However, generic segmentation tools, despite widespread applicability,
often lack the specificity required for clinically critical and disease-
specific tasks like meningioma RT planning. To overcome these limita-
tions, we introduce Interactive-MEN-RT, a dedicated IMIS tool specifi-
cally developed for clinician-assisted 3D meningioma segmentation in RT
workflows. The system incorporates multiple clinically relevant interac-
tion methods, including point annotations, bounding boxes, lasso tools,
and scribbles, enhancing usability and clinical precision. In our evalua-
tion involving 500 contrast-enhanced T1-weighted MRI scans from the
BraTS 2025 Meningioma RT Segmentation Challenge, Interactive-MEN-
RT demonstrated substantial improvement compared to other segmen-
tation methods, achieving Dice similarity coefficients of up to 77.6% and
Intersection over Union scores of 64.8%. These results emphasize the need
for clinically tailored segmentation solutions in critical applications such
as meningioma RT planning. The code is publicly available at: https://
github.com/snuh-rad-aicon/Interactive-MEN-RT

Keywords: Magnetic Resonance Imaging + Meningioma - Tumor
Segmentation - Interactive Medical Image Segmentation

1 Introduction

Meningiomas, the most common primary intracranial tumors, frequently
require radiotherapy (RT) as a primary or adjuvant treatment modality. The
success of RT is critically contingent upon the precise delivery of radiation to
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(a) Convexity Meninglioma (b)Skull Base Meninglioma

Coronal

Fig. 1. Representative meningioma cases illustrating anatomical diversity. (a) Convex-
ity meningioma with clear margins; (b) Skull base meningioma encasing structures

the target volume while minimizing exposure to adjacent healthy brain struc-
tures and organs at risk (OARs) [1]. Accurate delineation of the gross tumor
volume (GTV) is therefore a cornerstone of effective RT planning. However,
manual segmentation of meningiomas from medical imaging data-typically multi-
parametric Magnetic Resonance Imaging (MRI)-is a labor-intensive and techni-
cally demanding task. It is susceptible to substantial inter- and intra-observer
variability, even among experienced radiation oncologists and neuroradiologists
[2]. This inconsistency is primarily attributable to the anatomical diversity and
intrinsic heterogeneity of meningiomas, including variations in tumor location,
shape, and imaging features such as cystic degeneration, necrosis, or calcification.

The anatomical complexity and heterogeneity of meningiomas, particularly
those at the skull base or near intricate neurovascular structures, pose sig-
nificant challenges to accurate boundary delineation. Figurel illustrates rep-
resentative examples of meningiomas in distinct intracranial locations, high-
lighting the marked variability in tumor morphology, size, and relationship to
adjacent anatomical structures. As depicted, convexity meningiomas typically
exhibit well-defined margins and limited involvement with critical neurovascu-
lar anatomy. In contrast, skull base or ventricular meningiomas often abut or
encase major vessels and cranial nerves, rendering manual segmentation chal-
lenging even for experts. These examples underscore the need for advanced seg-
mentation tools that can robustly accommodate both the anatomical diversity
and internal complexity of meningiomas encountered in radiotherapy planning.

To address these limitations, automated segmentation approaches, particu-
larly those leveraging deep learning, have garnered considerable attention. Con-
volutional Neural Networks (CNNs), especially U-Net-based architectures, have
demonstrated state-of-the-art performance in diverse medical image segmenta-
tion tasks [3,4]. Nevertheless, the reliability of fully automated models remains
suboptimal for cases involving heterogeneous tumor appearances or complex
anatomical locations. Consequently, a persistent need for clinician oversight
remains, especially in safety-critical applications like RT planning.

Interactive Medical Image Segmentation (IMIS) frameworks have emerged as
a promising solution, integrating artificial intelligence (AI) with clinician exper-
tise to facilitate more accurate and efficient tumor delineation [5]. The advent
of foundation models such as the Segment Anything Model (SAM) [6,7] ini-
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tially propelled progress in this domain, but early iterations were constrained by
their two-dimensional scope. Recent advancements-including SAM-Med3D [8],
MedSAM?2 [9], and the nnInteractive framework [10]-have enabled interactive
segmentation in volumetric medical images, fostering more effective clinicianAl
collaboration. Despite these advances, many general-purpose IMIS tools treat the
initial automated segmentation merely as a preliminary estimate, which may be
insufficient for RT planning, where even minor errors can have significant dosi-
metric consequences.

In this study, we present Interactive-MEN-RT, a domain-specific and highly
accurate IMIS tool tailored for meningioma delineation in the RT workflow.
Built upon the robust nnU-Net V2 architecture [3,11] and enhanced with a
bespoke interactive training module [10], our system is engineered to iteratively
refine tumor segmentations in direct response to clinician input, thereby aligning
the final contours with expert judgment. Our contributions are twofold: (1) We
show that adapting IMIS models to the meningioma RT domain, using task-
specific fine-tuning and clinician-guided iterative refinement, leads to significant
improvements over general-purpose baselines like SAM-Med3D and nnlnterac-
tive in both segmentation accuracy and clinical usability. (2) We provide com-
prehensive validation demonstrating that, in the context of meningioma RT,
specialized, domain-adapted models are essential to achieve the requisite accu-
racy and reliability for clinical use, with consistent gains observed across all
forms of user interaction.

2 Methods

This section presents the methodology of the Interactive-MEN-RT system for
accurate meningioma segmentation in radiotherapy planning. It describes the
data preprocessing pipeline, the U-Netbased model architecture, the integration
and simulation of interactive user prompts, and an ablation study evaluating the
impact of transfer learning (TL). An overview of the entire pipeline is illustrated
in Fig. 2.

2.1 Data Preprocessing and Preparation

For our experimental validation, we exclusively utilized the training set of the
BraT$S 2025 Meningioma RT Segmentation Challenge dataset [4]. This compre-
hensive dataset comprises 500 samples specifically curated for meningioma Gross
Tumor Volume (GTV) segmentation in brain MRI. The dataset exclusively uses
3D contrast-enhanced T1-weighted (CE-T'1w) images and preserves extracranial
structures, with patient-identifying facial features removed via defacing tech-
niques to ensure anatomical integrity. The entire dataset was partitioned into
400 samples for training and 100 for validation to facilitate robust model evalu-
ation.

Our preprocessing pipeline adapted robust protocols from nnU-Net: (1) inten-
sity normalization via Z-score standardization, (2) resampling to 1 mm isotropic



Domain-Specialized Interactive Segmentation Framework 35

Interactive Training Module

U-Net ! HxWxD |
1 H
| i
=> ’ !
W [T | |
—_— 1 i
1 i
! i
5 i i : |
|
e — | Prediction i
i !
- . : i
: | : |
£ I | '
£ ! H I
; ~MN\ : !
i I '
i E Ground Truth |
. |

Point BBox Scribble

BBox/Lasso

Scribble

Interactive Slide Selection ncorrect Fore/Back

Interactive Inference

Point

Lasso

Fig. 2. An overview of the Interactive-MEN-RT for meningioma gross tumor volume
segmentation with interactive prompts.
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voxel spacing, (3) spatial cropping to eliminate excessive background while pre-
serving anatomical context, and (4) data augmentation-including rotation, scal-
ing, elastic deformation, and intensity variations-to enhance model robustness.

2.2 Network Architecture

The architecture of Interactive-MEN-RT is based on the principles of nnInterac-
tive [10], a 3D promptable segmentation framework for volumetric medical image
analysis. Consistent with nnlnteractive’s design, we employ an U-Net-based
architecture over Transformer alternatives, building upon the nnU-Net frame-
work [3,11,12] and using the Residual Encoder (ResEnc-L) configuration as its
backbone. The architecture incorporates nnlnteractive’s sophisticated prompt-
processing mechanisms, adapted for the specific requirements of meningioma
segmentation to efficiently integrate user guidance. We leverage nnlnteractive’s
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multi-channel input design, which comprises three key components: (1) the orig-
inal CE-T1w MRI data, (2) previous segmentation results, and (3) interactive
guidance signals. Following nnInteractive’s methodology, the network supports a
comprehensive range of spatial prompt types, including points, bounding boxes,
lasso selections, and scribbles [10,13]. Each prompt type is encoded in two sepa-
rate input channels (positive and negative) within the interactive guidance sig-
nals.

We optimized the combination of loss functions for the binary task of dif-
ferentiating tumor from background in a radiotherapy planning context. The
final layer is configured for binary segmentation (tumor vs. background) with
a sigmoid activation function, optimized using a combination of Dice loss and
Cross-Entropy loss (DiceCELoss) to balance overlap accuracy with voxel-wise
precision.

2.3 Interaction Prompts

User Interaction Types. Drawing from advancements in IMIS systems such
as nnlnteractive [10], our module supports intuitive 2D prompts on a standard
axial view to guide 3D segmentation. The supported prompt types include points
for correcting localized errors with positive foreground and negative background
clicks; bounding boxes to define broad regions of interest; lasso selections as
closed-loop contours for precise delineation of irregular tumor boundaries; and
scribbles as free-form lines to indicate larger regions for inclusion or exclusion.
These user interactions are converted into spatial maps that indicate areas of
interest or correction, which are then combined with the original MRI to incor-
porate clinician expertise directly into the segmentation refinement process.

Training-Time Simulation of Prompts. During training, we simulated
realistic user interactions to improve model robustness and clinical relevance.
For each interaction type, including point, bounding box, scribble, and lasso
prompts, we employed dedicated sampling strategies that emulate clinical cor-
rection workflows while introducing stochastic variations. For point prompts, we
randomly sampled 12 positive points within the tumor, randomizing their loca-
tion, size, and number. Bounding box prompts involved generating a single box
on a tumor-containing slice with a random margin, often including jitter or size
variation. Scribble prompts were created by connecting 28 random points within
the tumor on a slice, with randomized order and added jitter or wavy effects
to mimic freehand drawing. Finally, lasso prompts simulated polygons by sam-
pling 412 jittered points along the tumor boundary on a selected slice, ensuring
valid closed contours. Across all prompt types, slice selection was weighted by
tumor area, and all randomizations captured the diversity of real-world clinical
interactions.
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2.4 Prompt Encoding

All user prompts (points, boxes, lassos, scribbles) are encoded as two additional
channels: one for positive (foreground) and one for negative (background) inter-
actions. Each channel matches the spatial dimensions of the input image and
is normalized to the [0, 1] range. These prompt channels are concatenated with
the original image to form the network input, allowing the model to flexibly
incorporate user guidance.

2.5 Ablation Study: Transfer Learning

To evaluate the effect of transfer learning, we compared two model initialization
strategies: (1) training the network from scratch with random initialization, and
(2) using pre-trained nnlnteractive weights for transfer learning. Both models
were trained and evaluated under the same protocol and dataset settings.

2.6 Implementation Details

All models were implemented in PyTorch 1.13 and trained on a NVIDIA A6000
GPU with 48 GB of memory. Training was performed using 3D patches of size
128%x128x128 and a batch size of 8. The optimizer was SGD with Nesterov
momentum, an initial learning rate of le-2, and a polynomial decay schedule.
Data augmentation included random rotations (£15°), scaling (0.91.1x), elastic
deformation, and intensity shifts (£10%). Consistent preprocessing and evalua-
tion protocols were used for all experiments.

(a)Input (b)nnUNet (C);;‘f‘:;tw’ (d)MedSAM2 (e)SAM-Med3D (f)nnInterative  (g)Ours (h)Ours(TL) (i)Ground Truth

2l

Fig. 3. Qualitative segmentation overlays for each method and the ground truth under
point prompt interaction settings.
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Table 1. Interactive segmentation performance by prompt type (mean £+ SD).
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Prompt | Method DSC (%) | IoU (%)
None nnUNet 65.5£25.1|53.1£23.9
Point |[MedSAM2 [9] 10.1 £ 9.2 5.1 £ 5.0
SAM-Med3D [§] 74.9 +21.9/60.4 + 20.5
nnlnteractive 69.7£22.2|57.2£223
Interactive-MEN-RT (scratch)|75.5 +16.1/62.8 +17.2
Interactive-MEN-RT (TL) 72.8+20.4|60.5 £ 20.6
BBox |MedSAM2 [9] 63.2+21.5/49.1 £19.6
nnlnteractive 50.1 +16.4|35.0 +14.9
Interactive-MEN-RT (scratch)| 76.0 £ 13.0 | 62.9 & 15.3
Interactive-MEN-RT (TL) 7T7.6+£11.2/64.6 £13.7
Lasso nnlnteractive 61.8+£21.2|47.9£20.9
Interactive-MEN-RT (scratch)77.5 + 13.0/64.8 £ 15.1
Interactive-MEN-RT (TL) 63.6 +30.2 | 52.6 £ 27.5
ScribblennInteractive 73.9£17.7(61.2+18.7
Interactive-MEN-RT (scratch)|76.2 +15.0/63.5 - 16.5
Interactive-MEN-RT (TL) 69.7 £25.058.0 £ 23.7

2.7 Evaluation Metrics and Baselines

Segmentation accuracy was evaluated on the validation set using two standard
metrics: the Dice Similarity Coefficient (DSC) and Intersection over Union (IoU).
We compared the performance of Interactive-MEN-RT with several state-of-
the-art interactive segmentation frameworks, including nnInteractive [10], SAM-
Med3D [8], and MedSAM2 [9], as well as an ablation variant that distinguished
between training from scratch and transfer learning. To compare with an auto-
matic segmentation model, we additionally included nnUNet [14] as a strong
baseline due to its proven generalization capability across diverse medical seg-
mentation tasks. To evaluate the interactive methods, user interactions were
simulated by sampling prompts from ground truth tumor regions on a per-case
basis.

3 Results

3.1 Qualitative Assessment by Prompt Type

As shown in the interactive inference results in Fig. 2, Interactive-MEN-RT con-
sistently produces accurate and robust segmentations across diverse prompt
types. The visual examples demonstrate that Interactive-MEN-RT consistently
achieves high-quality segmentations regardless of the prompt strategy employed.
Interactive-MEN-RT adeptly handles various input modalities, from point
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prompts for initial delineations to bounding box prompts for refining com-
plex regions. This adaptability is crucial for real-world clinical scenarios where
diverse tumor characteristics and user preferences necessitate flexible interaction.

(a) nnUNet (b) MedSAM2 (c) SAM-Med3D (d) nninterative (e)Ours (£)Ours(TL) (g) Ground Truth

' BP9 ®9POE
' $ 9 9 9 9 §

Fig. 4. Qualitative 3D segmentations for each method and the ground truth.

3.2 Interactive Segmentation Performance

Table 1 presents a comparative performance analysis of Interactive-MEN-RT
against leading interactive segmentation models, including SAM-Med3D [§],
MedSAM?2 [9], and nnInteractive [10]. The analysis evaluates segmentation accu-
racy (DSC and IoU) across various prompt types: points, bounding boxes, lassos,
and scribbles. This comparison also serves as an ablation study, highlighting the
impact of transfer learning within the Interactive-MEN-RT framework.

Interactive-MEN-RT consistently demonstrated performance superior or
comparable to the baseline methods across all prompt types. With point-based
prompts, the scratch-trained Interactive-MEN-RT model yielded the highest
DSC (75.5% =+ 16.1), outperforming all baselines, while its transfer learning (TL)
variant achieved a leading IoU score (60.5% =+ 20.6). For bounding box interac-
tions, the TL model achieved the highest DSC (77.6% =+ 11.2) and IoU (64.6%
+ 13.7), with the scratch-trained model also showing strong performance. In the
case of lasso prompts, the scratch-trained model again led in both DSC (77.5%
+ 13.0) and ToU (64.8% =+ 15.1), substantially outperforming both nnInteractive
and the TL variant. Similarly, for scribble-based corrections, the scratch model
obtained the highest DSC (76.2% + 15.0) and IoU (63.5% + 16.5).

3.3 Comparative Qualitative Analysis of Segmentation Methods

Figure3 presents a qualitative comparison of segmentation results obtained
under a single point prompt on representative meningioma cases. The figure
facilitates a direct visual comparison of outputs from MedSAM2, SAM-Med3D,
nnlnteractive, Interactive-MEN-RT (trained from scratch), and Interactive-
MEN-RT (with transfer learning) against the ground truth annotations. Each
row corresponds to a distinct meningioma case, strategically chosen to exem-
plify the diversity of tumor locations relevant to RT planning: convexity, skull
base, falx/parasagittal, and ventricular regions. This presentation of qualitative
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results across varied clinical scenarios effectively demonstrates the robustness
and adaptability of Interactive-MEN-RT.

As shown in Fig. 4, volumetric renderings of predicted segmentations illus-
trate the spatial coherence and completeness of Interactive-MEN-RT compared
to baseline models, offering a more comprehensive perspective on tumor cover-
age that may be particularly helpful for irregular or deeply situated lesions in
anatomically complex regions such as the skull base and ventricles.

4 Discussion

This study demonstrates the clinical and technical value of Interactive-MEN-RT,
a specialized interactive segmentation system designed for meningioma radio-
therapy planning. It enables clinicians to delineate target volumes with minimal
input, reducing inter-observer variability and streamlining RT workflows. Its
robustness across diverse prompt types-including points, bounding boxes, las-
sos, and scribbles-ensures flexibility in accommodating varying user preferences
and clinical scenarios. Importantly, the ability to achieve high accuracy with
minimal input makes it well-suited for time-sensitive clinical workflows.

Our comparative analysis demonstrates that Interactive-MEN-RT consis-
tently achieves superior or competitive performance compared to established
baseline models, such as SAM-Med3D (8], MedSAM2 [9], and nnInteractive [10].
The most substantial performance improvements were observed with point and
lasso prompts, emphasizing the effectiveness of our prompt encoding and train-
ing methodologies. These results highlight the value of domain-specific models
in safety-critical tasks where general-purpose tools may fall short.

Models trained from scratch on task-specific data often surpassed transfer
learning, especially with fine-grained prompts. Although nnlnteractive gener-
alizes well, it underperforms in capturing lesion-specific details compared to
scratch-trained models. This limitation likely arises from the model’s optimiza-
tion towards particular prompt types or anatomical contexts, restricting its
adaptability during fine-tuning. Transfer learning remains useful when data or
compute is limited, especially for simple prompts like boxes. A hybrid strategy
combining transfer learning and domain-specific training is recommended for
precision-critical applications.

This study has several limitations. First, user interactions were simulated
rather than obtained directly from clinicians, potentially limiting the represen-
tation of the diverse and complex nature of real-world clinical usage. Second, the
evaluation was limited to a single dataset [4], raising concerns about generaliz-
ability. Finally, prospective clinical studies and comprehensive user experience
assessments are needed to confirm the system’s practical utility and usability in
clinical settings.

5 Conclusion

In conclusion, Interactive-MEN-RT presents a promising interactive segmenta-
tion solution tailored for meningioma radiotherapy planning, achieving strong
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performance across various prompt types. Its ability to deliver accurate segmen-
tation with minimal input, combined with favorable comparisons against estab-
lished baselines, suggests strong potential to enhance efficiency, consistency, and
safety in clinical radiotherapy workflows. These findings underscore the value of
utilizing specialized, disease-specific models in safety-critical medical settings,
as they may better address the limitations of general-purpose frameworks and
align more closely with clinical practice demands.
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Abstract. Temporomandibular degenerative joint disease (TM DJD) is
a multifactorial condition with complex clinical presentations. This study
presents a multimodal framework centered on structured summarization
of clinical text, supported by imaging information from automatically
registered MRI and CBCT scans. Two large language models, BART
and DeepSeek-R1, were fine-tuned on 1,813 annotated text segments
from 500 TM DJD patient records to extract 56 clinical indicators,
including pain severity, jaw function, imaging findings, and sleep distur-
bances. The models converted narrative notes into structured data fields
for use in clinical dashboards enabling patient-specific and population-
level analyses. BART outperformed DeepSeek in clinical field extrac-
tion accuracy, precision, and recall, despite DeepSeek achieving slightly
higher ROUGE metrics based on word-level overlap. A parallel auto-
mated MRI-to-CBCT registration pipeline achieved submillimeter accu-
racy and a 98.75% success rate. This work extracted clinically meaning-
ful pain comorbidities and radiological findings from unstructured clini-
cal narratives, enabling actionable insights for musculoskeletal precision
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care. The future integration of structured clinical data and multimodal
image analyses may enable holistic, personalized patient models.

Keywords: Temporomandibular degenerative joint disease -
Multimodal imaging - Large Language Models

1 Introduction

Temporomandibular disorders (TMD) are the second most prevalent muscu-
loskeletal condition after chronic low back pain, affecting 5-12% of the popula-
tion and costing an estimated $4 billion annually [1]. Around 80% of patients
exhibit clinical signs such as disc displacement and joint pain often progressing
to temporomandibular degenerative joint disease (TM DJD) [1-3]. Comorbidi-
ties like headaches and sleep disturbances are common and significantly influence
disease progression and treatment outcomes [4-6]. While MRI and CBCT are
essential for visualizing joint anatomy, they do not capture a patient’s symptom
burden or comorbidity profile, factors critical for personalized treatment. Clinical
decision-making requires understanding both structural changes and functional
impact, such as sleep disruption, jaw locking, or radiating pain. These details,
often documented only in free-text notes, were captured at scale using MedEx,
a tool developed with two fine-tuned large language models (LLMs): Bidirec-
tional Auto-Regressive Transformer (BART) [10] and DeepSeek-R1. Both mod-
els were downloaded and used offline to ensure patient data privacy, with no
clinical information transmitted over the internet. Trained on 500 TMD notes
processed into 1813 annotated segments, both models extract structured data
from unstructured narratives [7-9], mapping each note to 56 predefined clinical
fields (e.g., “maximum opening: 38 mm”; “disc displacement: with or without
reduction”). This work provides a structured textual layer containing disease-
related pain comorbidities and imaging findings, along with MRI-to-CBCT reg-
istered images [11]. These datasets support comprehensive TMJ evaluation and
are aligned with initiatives such as the TMD IMPACT Consortium [12] and the
NTH HEAL Initiative [13].

2 Methods
2.1 Study Sample

This study focuses on the structured summarization of clinical notes for patients
with TM DJD. A retrospective dataset of de-identified clinical notes was com-
piled from 500 patients treated at the Baylor University Department of Oral
and Maxillofacial Surgery. The dataset includes initial clinical examination notes
and radiology reports for CBCTs and MRIs, capturing pain-related comorbidi-
ties and diagnostic impressions at baseline diagnosis. Patients were included
only if MRI and CBCT imaging had been performed within a one-year interval
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to ensure temporal alignment between modalities. The imaging pipeline incor-
porated a previously validated MRI-to-CBCT registration method [11]. This
method aligns MRI with CBCT scans using rigid mutual informationbased regis-
tration, achieving submillimeter translation errors and rotation differences under
3 degrees. Follow-up visits and patients under 12 years of age were excluded.
This study was approved as exempt by the University of Michigan Institutional
Review Board (HUMO00239207).

2.2 Data Preprocessing and Annotation

Clinical notes (PDF/DOCX) were converted to plain text via a custom Python
script. To meet large language model input constraints, each document was seg-
mented into discrete, non-overlapping text segments, with a maximum length
of 1024 tokens. Text segmentation to 1024 tokens was required due to input
size constraints of the BART model. While DeepSeek supports larger context
windows, identical chunk sizes were used across models to ensure fair compari-
son and maintain consistency. Segmentation was designed to preserve semantic
integrity, aggregating full paragraphs and breaking only at sentence boundaries
when necessary. Annotation guidelines were defined through a clinician-led cali-
bration process to ensure consistent labeling. These guidelines were then applied
to annotate all 1813 segments using a predefined set of 56 descriptors related
to TM DJD, including pain, sleep disturbances, hearing loss, and jaw function.
Only terms with explicit textual evidence were included in the final dataset,
which was then used to train and evaluate multiple summarization models. This
textual layer complements the anatomical context captured through MRI-CBCT
registration, without requiring additional image-based annotation (Fig. 1).

2.3 Model Architectures and Training Details

Two large language models were selected to evaluate clinical summarization
performance: BART-large-CNN [14], a summarization-specific encoder—decoder
model, and DeepSeek-R1-Distill-Qwen-1.5B, a distilled general-purpose lan-
guage model (Figs.2 and3). It is important to note that although BART
is a summarization-specific model, the training objective was not to generate
shorter narrative summaries, but rather to produce structured outputs (key-
value pairs). These models were chosen for their wide adoption and architec-
tural diversity, enabling comparison between task-specific and general-purpose
modeling approaches. BART was obtained from the Hugging Face Transformers
library and fine-tuned using its default summarization configuration. DeepSeek
was fine-tuned using Low-Rank Adaptation (LoRA) and 4-bit quantization.
LoRA adapters were applied to key attention and MLP components to enable
adaptation of structural and content representations for summarization. Both
models were trained on the same dataset of annotated clinical text segments.
Training was conducted using cosine learning rate scheduling, gradient accumu-
lation over 4 steps, and without any prompt engineering or instruction tuning.
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IMAGING PIPELINE CLINICAL TEXT PIPELINE
CBCT + MRI (DICOM) Clinical Notes (PDF/DOCX)
=200 paired volumes. =500 TM DJD patients
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Fig. 1. Overview of the multimodal TMJ analysis workflow. The imaging pipeline (left)
processes CBCT and MRI volumes through preprocessing and registration, enabling
disc segmentation; over 200 patients have been processed to date. The clinical text
pipeline (right) extracts 56 structured diagnostic fields from unstructured notes using
fine-tuned LLMs, applied to 500 patients. Unlike traditional summarization, the models
perform structured field extraction. Current outputs support both population-level
comorbidity analysis and patient-specific interpretation. ROUGE scores assess lexical
similarity, while classification metrics reflect clinical extraction accuracy. Future work
will unify these tools within 3D Slicer for real-time diagnostic support.

Model outputs were evaluated using Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) metrics to assess summarization quality [15].

2.4 Training and Validation Protocol

The dataset was divided using an 80:10:10 split (80% of samples for training,
10% for validation, and 10% for testing). A 5-fold cross-validation protocol
was employed to mitigate overfitting and assess generalizability. Both BART
and DeepSeek models were evaluated across all folds under identical condi-
tions. Training was monitored via ROUGE scores, and the model with the best
ROUGE-1 score across folds was designated as the final summarization model.

2.5 Performance Evaluation

Model performance was evaluated using two categories of metrics: ROUGE-
based lexical similarity and classification metrics for clinical field extraction.
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BART (Bidirectional and Auto-Regressive Transformers) Architecture

Bidirectional Encoder
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T T
Add & Norm J [ Add & Norm }

Bidirectional
attention to all tokens

Encoder-Decoder Attention

Output: Summarized Text
N x Decoder Layers

Output Embeddings + Positional
Masked Multi-Head Encoder-Decoder Feed Forward
Self-Attention Attention Network

Autoregressive

only attends to past tokens Add & Norm Add & Norm Add & Norm

Fig. 2. Architecture of the BART LLM used for fine-tuning.

DeepSeek-R1-Distill-Qwen Architecture

Fig. 3. Architecture of the DeepSeek LLM used for fine-tuning.

ROUGE-1, ROUGE-2, ROUGE-L, and ROUGE-Lsum were used to assess over-
lap between predicted and reference summaries. Additionally, accuracy, preci-
sion, recall, and F1 scores were computed for ten representative clinical cate-
gories, including headache intensity, jaw function, and disability rating. These
values were derived using structured post-processed outputs and correspond-
ing clinician annotations. Particular attention was given to comorbidity indi-
cators with variable expression patterns, which tend to challenge LLMs in
medical documentation. Both the BART and DeepSeek models were evaluated
under this framework. The extracted summaries were formatted as keyvalue
pairs (e.g., maximum opening: 48mm, daily pain: 6), enabling alignment with
image-based dashboards and structured visualization tools.

3 Results

The MRI-to-CBCT registration framework previously validated on 70 paired vol-
umes achieved a 98.75% success rate, with mean translation error below 1 mm
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and rotational deviation under 3° [11]. Figure4 and Table1 demonstrate this
high-accuracy pipeline that provides a reliable anatomical foundation for multi-
modal TMJ analysis.

Fig. 4. MRI-CBCT registration comparison: A, G) Fixed CBCT, B, I) MRI man-
ual/automated registration, C, H) MRI-CBCT overlays, D, J) TMJ segmentation
(mandible: red, cranial base: blue, disc: green), E, K) Frontal views, F, L) Lateral
views. (Color figure online)

Tables2 and 3 report ROUGE summarization scores under 5-fold cross-
validation for the BART and DeepSeek models, respectively. DeepSeek slightly
outperformed BART in ROUGE scores (e.g., ROUGE-L +1.5%), indicating a
minor advantage in surface-level fluency and lexical overlap. However, ROUGE
metrics primarily assess general summarization quality and do not directly reflect
field-level extraction accuracy required for clinical deployment.

Tables4 and 5 present the classification performance of both models on 10
comorbidity-related clinical fields. Despite lower ROUGE scores, BART achieved
substantially higher accuracy, precision, recall, and F1 scores across most cate-
gories. BART’s F1 scores exceeded 70% in structured fields such as patient age,
airway obstruction, and arthritis location. In contrast, DeepSeek performance
varied more widely and was notably lower on low-prevalence items such as tin-
nitus and disability rating.

To illustrate the practical value of the extracted information, the manually
curated clinical summaries for the full 500-patient cohort were compiled and ana-
lyzed. Structured key-value pairs—such as patient age, headache intensity, and
headache location—were aggregated across the dataset. Descriptive statistics
including prevalence, mean scores, and standard deviations were computed for
relevant fields. This analysis revealed consistent TM DJD comorbidity patterns,
including high prevalence of sleep disturbances, lateralized jaw pain, and varia-
tion in headache intensity. Figure5 presents a visual dashboard generated from
the manually extracted summaries, offering insight into population-level symp-
tom trends and TMJ function characteristics.
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Table 1. Differences in six Degrees of Freedom between clinician and Elastix Image
Registration.

ROTATION (°)

Pitch Roll Yaw
Mean difference (SD) 0.49 (2.28)-0.62 (2.21)-0.99 (3.84)
Mean absolute difference (SD) 1.53 (1.75)1.69 (1.54) [2.70 (2.89)
Minimum absolute difference 0.00 0.02 0.03
Maximum absolute difference 8.72 6.79 16.60
75th percentile of absolute difference|1.93 2.56 3.04
90th percentile of absolute difference|3.51 3.32 5.10
TRANSLATION (mm)

LR AP ST
Mean difference (SD) 0.3 (1.86) |0.89 (0.94) -0.20 (0.63)
Mean absolute difference (SD) 0.92 (1.64)(0.98 (0.85) [0.50 (0.43)
Minimum absolute difference 0.01 0.01 0.00
Maximum absolute difference 13.10 3.52 2.57
75th percentile of absolute difference|1.16 1.48 0.72
90th percentile of absolute difference|1.55 2.12 0.95

Table 2. Summarization performance (ROUGE scores) of fine-tuned BART across
5-fold cross-validation.

ROUGE-1ROUGE-2 ROUGE-L ROUGE-Lsum
Fold 1 [83.68 71.99 83.50 83.49
Fold 2 |83.48 73.40 83.11 83.14
Fold 3 [84.93 74.23 84.38 84.57
Fold 4 |85.50 74.73 85.11 85.21
Fold 5 |85.47 74.64 84.98 85.01
Average84.61 73.80 84.22 84.29

Table 3. Summarization performance (ROUGE scores) of fine-tuned DeepSeek across
5-fold cross-validation.

ROUGE-1ROUGE-2ROUGE-L ROUGE-Lsum
Fold 1 |86.55 86.49 86.53 86.54
Fold 2 |84.90 84.79 84.86 84.82
Fold 3 |86.08 86.09 86.10 86.11
Fold 4 |85.96 85.91 85.95 85.92
Fold 5 [85.21 85.19 85.17 85.21
Average|85.74 85.70 85.72 85.72
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Table 4. Fine-tuned BART Model Performance for Best Fold

Accuracy (%)[Precision (%)Recall (%)/F1 score (%)
Patient Age 78.6 88.0 88.0 88.0
Airway Obstruction |65.3 78.1 80.0 79.0
Arthritis Location  [62.5 72.3 81.4 76.9
Headache Intensity [54.4 77.5 64.6 70.4
Fibromyalgia Present|50.0 100.0 50.0 66.7

Table 5. Fine-tuned DeepSeek Model Performance for Best Fold

Accuracy (%) Precision (%)Recall (%)|F1 score (%)
Jaw Function 51.1 84.4 61.4 71.1
Arthritis Location [49.2 64.0 68.1 66.0
Earache 35.7 72.3 60.6 52.6
Airway Obstruction|29.9 40.0 54.1 46.0
Muscle Tenderness |25.4 32.6 53.6 40.6

Age Distribution Sleep Disorder Prevalence [Muscls Tendernass & Migraine & Headache
Stiffness & Soreness.

Maximum Opening Headache Locations

EETO

Mean Score (0-10 Scale)

£
£ 5214
&

ool
lllll

Fig. 5. Population-level dashboard of TMJ comorbidities (e.g., pain severity, jaw func-
tion) extracted from 500 clinical notes.

4 Discussion

This study presents a framework that combines an automated MRI-to-CBCT
registration pipeline with structured clinical note summarization to support com-
prehensive assessment of TM DJD. Building on prior work [11], the imaging
pipeline now automates previously manual steps such as initial approximation
and TMJ cropping, thereby reducing inter-observer variability and enhancing
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reproducibility. Segmentations were first generated using an automated Al-based
approach, and then manually reviewed and corrected by trained clinicians to
ensure high-quality anatomical accuracy prior to registration. The workflow is
implemented as an open-source 3D Slicer module, facilitating both clinical and
research use. Validated on paired MRI-CBCT volumes, the registration achieved
a 98.75% success rate with submillimeter translation and sub3° rotational error,
yielding anatomically coherent 3D representations of the TMJ [11].

This work focuses on the automated extraction of structured information
from clinical and imaging notes. A dataset of 500 de-identified notes from TM
DJD patients was used to fine-tune two LLMs: BART and DeepSeek-R1. While
DeepSeek achieved marginally higher ROUGE scores, BART consistently out-
performed on field-level metrics including accuracy, precision, and recall. These
findings are consistent with prior research showing that BART can outperform
general-purpose models by over 15% in ROUGE-L for EHR summarization [10],
and that smaller, domain-adapted models provide more reliable performance in
precision-sensitive clinical NLP tasks [8].

A key strength of this framework lies in MedEx’s ability to navigate diverse
documentation styles. Given the absence of standardized questionnaires across
TMD centers, clinical heterogeneity often hinders comparability. MedEx’s struc-
tured outputs help normalize unstructured documentation and enable aggre-
gation of pain, function, and sleep metrics across a 500-patient dataset. This
structured approach enables direct correlation between functional limitations
and anatomical findings. Dashboards constructed from these summaries high-
lighted trends in headache intensity, lateralized joint pain, and functional limi-
tation [16], reflecting the model’s robustness in capturing fragmented or variable
text. The structured summaries also support patient-specific visualization and
analysis. Each individual’s comorbidities, such as joint arthritis, headache loca-
tion, and airway obstruction, are aligned with their corresponding MRI-CBCT
imaging findings, enabling a unified, subject-level diagnostic view.

Several areas of improvement remain. Comparison with a naive baseline using
EMERSE, a text-mining tool for clinical notes, is ongoing to quantify MedEx’s
added value. Additionally, although BART and DeepSeek were selected for task-
specific and general-purpose comparison, future work will assess zero-shot LLMs
like GPT-4 and Gemini using PHI-safe platforms. These models may enable
few-shot prompting or direct deployment in resource-constrained environments.
Planned development will align the structured outputs from LLMs with 3D
Slicer dashboards that integrate MRI-CBCT visualizations, where each patient’s
extracted comorbidities will be displayed alongside their anatomical imaging
data, enabling personalized, multimodal planning.

Another challenge lies in the model’s sensitivity to variations in note struc-
ture and terminology, which can limit generalizability. Errors may stem from
underrepresented terms or occasional hallucinations [17]. Planned data augmen-
tation includes structural and lexical modifications-such as synonym replace-
ment, noise injection, and domain-specific paraphrasing-drawing from denoising
pretraining strategies [18]. These techniques can enhance robustness while pre-
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serving clinical validity. Future work will explore longer-context models (e.g.,
DeepSeek’s full context window, GPT-4) to evaluate whether document-level
coherence improves field extraction, especially for cross-sentence inferences.

Although ROUGE and classification scores offer valuable benchmarks for
performance, clinical deployment will require human-in-the-loop evaluation and
broader generalization across patient populations. By aligning imaging data with
structured summaries extracted from clinical notes, this work establishes a scal-
able foundation for TMJ analysis that links radiologic context with diagnostic
information captured in text, enhancing the utility of both data sources for clin-
ical decision-making. Future directions include automated segmentation of the
articular disc from MRI, comparisons with rule-based systems such as EMERSE,
and evaluation of zero-shot LLMs for clinical deployment. Qutputs such as CSV
files and dashboards facilitate compatibility with clinical workflows and integra-
tion into open-source visualization tools [19].

5 Conclusion

This study introduces a multimodal framework for TMJ assessment that com-
bines automated MRI-to-CBCT registration with structured clinical summariza-
tion using fine-tuned language models. Summarization models extract comorbid-
ity and imaging related indicators from clinical notes, with BART outperforming
DeepSeek in structured output accuracy. The resulting structured datasets and
visual dashboards reveal clinically relevant patterns in pain, function, and sleep
disturbances, supporting population-level analysis and providing integrated visu-
alization of patient-specific diagnoses.
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Abstract. Accurate localization of all root canal orifices is critical for
the success of root canal treatment. However, concealed orifices, particu-
larly the second mesiobuccal canal (MB2), are frequently missed due
to ambiguous visual cues, leading to high rates of treatment failure.
To address this challenge, we propose a novel computer-aided detec-
tion framework, OrificeNet, the first to perform orifice detection directly
from intraoperative microscope-view RGB images. Our framework for-
mulates this as a segmentation task, employing an encoder-decoder net-
work with a multi-scale strategy and a hierarchical cascaded decoder to
effectively identify orifices. Furthermore, to simulate the real clinical
workflow, we introduce a CBCT-guided post-processing step that lever-
ages pre-operative 3D data to refine the 2D prediction via an affine
transformation, accurately locating and completing concealed orifices.
Extensive experiments on a clinically collected dataset demonstrate that
our proposed method significantly achieve better performance. Our work
presents an effective and clinically-translatable solution to reduce the risk
of missed canals, enhancing the success rate of root canal treatments.

Keywords: Canal orifices detection + Deep learning

1 Introduction

Root canal treatment aims to eliminate infection and preserve the natural tooth
by thoroughly cleaning and sealing the root canal system. A critical prerequisite
for its success is the precise intraoperative localization of all canal orifices on
the pulp chamber floor under the dental operating microscope, as these orifices
serve as entry points to the root canal system [1].

In clinical practice, however, identifying all canal orifices is a frequent chal-
lenge, largely due to the presence of concealed orifices [2]. Among these, the
second mesiobuccal canal (MB2) in maxillary molars is the most notoriously
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missed. Located within the mesiobuccal root, the MB2 orifice is typically situ-
ated palatal or slightly mesial to the main mesiobuccal (MB) canal. Its detection
is severely hampered by factors like anatomical variations, dentinal overgrowth,
and especially, calcification. Calcific deposits not only physically obstruct the
orifice but also mimic the color and texture of the surrounding dentin, making it
nearly indistinguishable even under a dental operating microscope [3]. Conse-
quently, missed MB2 canals are strongly associated with persistent periapical
lesions and may nearly quadruple the risk of treatment failure [4], making their
detection critically important.

Given the difficulty of visually identifying MB2 under calcified or morpho-
logically complex conditions, clinicians often turn to advanced technologies for
support [5]. While the dental operating microscope provides essential magnifi-
cation, pre-operative aids like Cone-Beam Computed Tomography (CBCT) are
often used to create a 3D “map” to guide the intraoperative search [6]. How-
ever, even with these combined tools, the outcome remains heavily reliant on the
clinician’s subjective interpretation and clinical experience. Mentally registering
3D CBCT volumes with real-time 2D microscope views imposes a significant cog-
nitive burden and demands advanced spatial reasoning, skills that may not be
well developed in general practitioners or early-career endodontists. This reliance
introduces considerable inter-operator variability and diagnostic inconsistency.

Given these persistent challenges, there is a pressing need for a computer-
aided detection (CAD) framework. Such a framework could serve as an intelli-
gent, objective, and standardized tool to assist clinicians in identifying concealed
canal orifices, particularly MB2, under the microscope view. It would reduce
operator variability, alleviate cognitive load, and enhance diagnostic accuracy,
thereby reducing the risk of missed canals in routine endodontic procedures.

To achieve this goal, we propose an easy-to-deploy and efficient CAD
framework for identifying concealed MB2 canal orifices. In contrast to prior
approaches that rely solely on CBCT for canal detection [7], our method lever-
ages microscope-view RGB images as the primary input modality. To the best
of our knowledge, this is the first work to perform MB2 canal orifice detec-
tion directly from dental microscope images, which better aligns with real-time
intraoperative scenarios. Specifically, we design a novel two-step pipeline. First,
a dedicated segmentation network is introduced to detect canal orifices from
RGB images, featuring a multi-scale, multi-head attention encoder and a hier-
archical difference propagation decoder. Then, to further improve localization
accuracy and mimic the real-world diagnostic workflow, we incorporate CBCT-
derived anatomical priors in a post-processing step to calibrate and refine the
initial predictions. This integration of both RGB and CBCT modalities not only
enhances diagnostic precision but also simulates the multi-source information
fusion process typically employed by clinicians, thereby improving the frame-
work’s clinical interpretability and applicability. Our main contributions are as
follows:

— We propose an effective CAD framework for detecting concealed root canal
orifices, with a focus on MB2. To the best of our knowledge, this is the
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first work to perform orifice detection directly from RGB microscope images,
rather than relying solely on CBCT.

— We introduce a CBCT-guided post-processing strategy to calibrate the detec-
tion results, which not only enhances spatial accuracy but also simulates real
clinical workflow, thereby improving the interpretability and trustworthiness
of the framework.

— We conduct extensive experiments on a private, clinically collected dataset.
The results demonstrate the effectiveness of our method, especially in identi-
fying MB2 orifices under challenging visual conditions.

2 Related Work

Recent studies [8-11] have increasingly applied deep learning to dental analy-
sis. However, its application to microscope-view orifice detection remains unex-
plored. Therefore, our review focuses on the most relevant existing applications,
which have predominantly utilized Cone Beam Computed Tomography (CBCT)
imaging to analyze dental anatomy.

Deep Learning in Canal Orifice Detection. Existing literature focuses pre-
dominantly on CBCT-based pulp cavity and root canal segmentation. For exam-
ple, Gamal et al. [12] introduced the Pulpy3D dataset and proposed a semantic
segmentation framework that jointly delineates the pulp cavity, root canal sys-
tems, and the inferior alveolar nerve from 3D CBCT scans. Fontenele et al. [7]
developed a CNN-based tool specifically for automated root canal segmenta-
tion in single-rooted teeth, achieving high accuracy on CBCT data. Addition-
ally, Wang et al. [13] proposed a deep multi-task learning framework for joint
tooth and root canal segmentation from CBCT, facilitating endodontic treat-
ment planning by leveraging shared representations.

3 Method

We formulate orifice localization as a semantic segmentation task to achieve
pixel-level delineation, which is better suited for handling the small size, irregu-
lar shape, and ambiguous boundaries of the targets. Our overall pipeline (Fig. 1)
employs a two-stage approach: an orifice detection network first generates an
initial segmentation from the 2D microscope view, which is then refined by a
post-processing module leveraging pre-operative CBCT data. The detailed net-
work architecture is presented in Fig. 2.

3.1 Orifice Detection Network Architecture

The core of our framework is a deep learning model featuring an encoder-decoder
architecture, specifically designed to handle the challenges of microscope-view
imagery. The encoder extracts robust multi-scale features, which are then pro-
gressively refined by the decoder to produce a pixel-level segmentation map.
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Fig. 1. Overview of our hybrid framework for concealed orifice detection. The pipeline
generates an initial prediction from an intraoperative 2D microscope image (B), which
is then refined in a post-processing step (C). This refinement is achieved by registering
the prediction with pre-operative orifice locations extracted from 3D CBCT scans (A)
via an affine transformation.

Encoder Module. The encoder is designed to capture scale-specific informa-
tion from the input. It begins by creating a multi-scale representation of the input
microscope image by resizing it to 1.5x, 1x (original), and 0.5x, a common zoom
strategy in existing works [14]. These three scaled inputs are fed through a
shared backbone network to generate feature maps (f°, f1, f2-5) at multiple
stages. This allows the network to capture both fine-grained local details from
the upscaled view and global contextual information from the downscaled view.
At each stage i: these multi-scale features are processed by two key blocks.
First, a Feature Aggregation (FA) block aligns and merges the features. The
1.5x scale feature map (f}°) is downsampled using hybrid average-max pooling,
while the 0.5x scale map (f2-®) is upsampled via bilinear interpolation. These
are then concatenated with the original 1x scale feature map to produce a sin-
gle tensor f;. Next, the aggregated f; are passed to a Feature Enhancement
(FE) block, which employs a multi-head attention mechanism. The final output
fi = Concat(fiﬁl, fi’g, e fi’g) is formed by first computing an enhanced feature

fi,g for each of the G parallel groups, and then concatenating their outputs:
A 3 . .
fig =Y _attP(fi) 0 xP(f), (1)
j=1

where ® denotes element-wise multiplication, and attéj)(-) and xgj )() are the
attention weights and content features for scale j in group g, respectively.
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Fig. 2. The detailed architecture of our orifice detection network

Decoder Module. The decoder, termed the Hierarchically and Group-
wise Cascaded Decoder (HGCD), progressively refines the feature maps
to generate the final segmentation. At each stage i, it first fuses the feature
map from the encoder fl with the upsampled output from the deeper stage f;i1
to create the block’s input f/ = f; + Up(fi+1), where Up(-) denotes a bilinear
upsampling operation. Within the HGCD block, f/ is split into multiple groups
that interact in a cascaded manner: fork connections pass information between
groups for iterative refinement, while a gate generator creates a channel-wise
attention vector ¢(-) from all gate branches:

¥ (gate;) = o(Lineary(ReLU(Linear; (GAP(gate;))))), (2)

where o denotes the Softmax activation function, GAP(-) is the global aver-
age pooling, and Linear; » are two linear layers. This vector then modulates
the concatenated out branches. The final output f, is obtained via a residual
connection:

fi = Conv(out; ® ¥(gate;)) + f1. (3)

This iterative refinement process allows the network to meticulously delineate
the complex boundaries of the canal orifices.

Loss Function. Following prior works [14], we use a combination of the stan-
dard binary cross-entropy (BCE) loss and an Uncertainty-Aware Loss (UAL).
Secifically, given an input image I, the network outputs a prediction map
P € [0,1]7*W where H and W are the image dimensions. Let G € [0, 1]7*W
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be the corresponding binary ground-truth mask. The BCE loss is formulated as:

1
HxW

{BcE = —

> > G (hyw)log (P (hyw)) + (1 = G (h,w))log (1 — P (h,w))].

h=1w=1
(4)
Due to the ambiguous boundaries of canal orifices, training with BCE loss
alone can lead to predictions with high uncertainty (i.e., pixel values close to
0.5). To address this, we incorporate a UAL to penalize such fuzzy predictions
and compel the model to produce a more decisive output as follows:

H W
1 2
toar =g 1;71: w§:1: (1 — 2P (h,w) — 1] ) (5)
Then the final objective function is a weighted sum of the BCE and UAL losses:

Liotal = lpcE + A LuarL. (6)

Here, ) is a balancing coefficient.

3.2 CBCT-Guided Post-Processing

In this section, we introduce a final post-processing stage that refines the net-
work’s output using pre-operative CBCT data to simulate the real clinical work-
flow. This stage simulates the clinical workflow of using a 3D map to guide a
2D search, effectively mitigating the risk of missed orifices like MB2. The core of
this process is a 2D affine transformation, computed from three corresponding
landmark orifices (Palatal, Mesiobuccal, and Distobuccal). To ensure a robust
registration, these correspondences are not assumed but actively identified:

1. Landmarks (P, MB, DB) are first automatically located in both the network’s
prediction and a set of candidate CBCT slices using pre-defined anatomical
rules (e.g., area size, relative distances).

2. The optimal CBCT slice is then determined by finding the best structural
match between the P-MB-DB triangle in the prediction and those in the
CBCT candidates.

Once the optimal correspondence and transformation are established, the matrix
is used to project the location of the concealed MB2 orifice from the selected
CBCT slice onto the final prediction map. This step corrects for potential omis-
sions by the network. Additionally, an iterative merging strategy is employed to
correct for over-segmentation by removing small, spurious detections, ensuring
the final output is anatomically plausible.
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4 Experiments

4.1 Experimental Settings

Dataset. Our study is based on a custom Canal Orifice Dataset collected intra-
operatively from maxillary molars. The data was collected between January
2023 and March 2025 from the Department of Oral and Maxillofacial Surgery,
Affiliated Stomatology Hospital of Tongji University. The dataset used in our
experiments consists of 556 images, all from cases confirmed to contain the sec-
ond mesiobuccal (MB2) canal. All images were captured after pulp chamber
opening but before instrumentation.

Table 1. Performance Comparison of Different Methods on the Canal Orifice Dataset

Methods [standard metrics|clinically informed metrics

mloUT |[DSCT |ODR1 [PCRT MB2-DRTMB2-MR|mLE (px)|
UNet 0.7115 |0.5830 |0.6475 [0.2017 |0.4118 0.5882 11.47
nnUNet [0.7492 0.6587 |0.7723 |0.3782 0.5462 0.4538 11.72
BiRefNet|0.6566 (0.4613 |0.3029 |0.0168 |0.0588 0.9412 10.54
SINetv2 |0.7546 |0.6698 |0.8908 [0.5714 |0.7143 0.2857 12.14
Ours 0.7710 |0.6937 10.9353 |0.7563 |0.8151 0.1849 10.23
Ours-pp | 0.7750| 0.7006 | 0.9521| 0.8992| 0.8908 | 0.1092 [10.44

Implementation Details. We conducted all experiments using PyTorch on an
NVIDIA GeForce RTX 4090 GPU. The network’s encoder was initialized with
weights from a PVT [15] model pre-trained on ImageNet, while all other layers
were initialized randomly. We used the Adam optimizer with an initial learning
rate of le-4, which decayed following a step strategy. The model was trained for
150 epochs with a batch size of 4, and all input images were resized to 384 x
384 during training.

Evaluation Metrics. To provide a comprehensive assessment, we evaluated
performance using both standard segmentation metrics and custom, clinically-
informed metrics developed in collaboration with endodontic experts. For pixel-
level accuracy, we used the Mean Intersection over Union (mlIoU) and Dice
Similarity Coefficient (DSC). To measure clinical utility, we introduced five
instance-level metrics. Orifice Detection Rate (ODR): The percentage of cor-
rectly detected orifices out of the total ground-truth orifices. Perfect Case Rate
(PCR): The percentage of images where all orifices were correctly identified
with no false positives. MB2 Detection Rate (MB2-DR) and Miss Rate
(MB2-MR): Metrics specifically evaluating the sensitivity and risk of miss-
ing the critical MB2 canal. Mean Localization Error (mLE): The average



60 K. Zhou et al.

Euclidean distance (in pixels) between the centers of matched predictions and
ground-truth orifices. A detection was considered successful if the predicted cen-
ter was within 50% of the ground-truth orifice’s diameter.

Comparative Methods. To the best of our knowledge, this is the first work to
address root canal orifice detection directly from intraoperative microscope RGB
images. As there are no prior methods for direct comparison, we selected several
state-of-the-art (SOTA) models from relevant domains to rigorously validate the
effectiveness of our proposed framework. The selected baselines include UNet
and nnUNet, which are benchmarks in medical image segmentation, as well as
BiRefNet [16] and SINetv2 [17], which are powerful models in Camouflaged
Object Detection, a task that shares challenges with our own.

4.2 Performance Comparison

Quantitative Results. The quantitative comparison on our main clinical
dataset is presented in Table 1. The results clearly show that our proposed net-
work (Ours) significantly outperforms all baseline methods across both standard
and clinically-informed metrics. For instance, our method achieves the highest
mloU of 0.7710 and a PCR of 75.63%. The introduction of our CBCT-guided
post-processing (Ours-pp) provides a substantial further improvement, boost-
ing the PCR to an impressive 89.92% and the critical MB2 Detection Rate to
89.08%, demonstrating its powerful capability to correct errors and complete the
detection of the most frequently missed canal.

Qualitative Analysis and Robustness. Figure 3 provides a qualitative com-
parison on paired clinical cases (caseA) and their simulated calcified counter-
parts (caseB) to demonstrate our method’s accuracy and robustness. The visu-
alizations clearly show our method’s superiority. While baseline methods like
BiRefNet and nnUNet frequently miss orifices even in standard clinical views
(e.g., caseA-1), their performance degrades drastically on the challenging calci-
fied versions where they often fail completely (e.g., caseB-3). In contrast, our
network (Ours) reliably identifies all concealed orifices in these difficult scenar-
ios. The final results (Ours-pp) further showcase how our CBCT-guided post-
processing refines the predictions for optimal accuracy, confirming our frame-
work’s effectiveness in clinically challenging situations.

4.3 Ablation Study

To validate the contribution of main components, including Feature Aggrega-
tion (FA), Feature Enhancement (FE), Hierarchically and Group-wise Cascaded
Decoder (H), Uncertainty-Aware Loss (U) and CBCT-Guided Post-processing
(C), we conducted a series of ablation experiments, with the results summarized
in Table2. The study demonstrates the effectiveness of our design, as remov-
ing any single component from our full framework leads to a clear degradation
in performance across all metrics.
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Fig. 3. Visualization of Segmentation Results on the Canal Orifice Dataset and its
Simulated Calcified Counterparts. The figure shows a qualitative comparison on four
clinical cases (A1-A4) and their corresponding simulated calcified versions (B1-B4). The
calcified counterparts were created by injecting flowable composite resin around the
orifice area to effectively mimic the visual characteristics of calcified tissue.

Table 2. Ablation Studies on Main Components

Ablation standard metrics|clinically informed metrics

FAFEH[U|CmIoUT DSCT |ODRT [PCR? |[MB2-DR{MB2-MR|mLE (px)]
v V|V 10.7293 |0.6210 |0.6916 |0.2101 |0.4706 0.5294 12.71

v v{v'| 10.7236 |0.6059 [0.6210 0.1681 |0.3445 0.6555 11.79

v v V| 10.6980 |0.5539 |0.5723 |0.1092 |0.2605 0.7395 12.89

v vV 0.7102 |0.5817 |0.7046 10.3782 |0.5378 0.4622 12.48

v v Vv 0.7710 |0.6937 |0.9353 |0.7563 |0.8151 0.1849 10.23

v v VIVIV]0.7750/ 0.7006| 0.9521| 0.8992| 0.8908 |0.1092 |10.44
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4.4 Clinical Case Studies

To further demonstrate the practical effectiveness of our approach in clinically
challenging scenarios, we present two representative cases in Fig. 4: a tooth with
a severely calcified second mesiobuccal (MB2) orifice (Case I) and another with
visually indistinct orifices (Case II). In both scenarios, the initial prediction from
our deep learning network alone is insufficient, failing to localize the concealed
MB2 canal (B). However, after applying our CBCT-guided post-processing, the
missing orifice is accurately recovered in the refined result (C). The clinical
validity of this refinement is confirmed by the successful treatment outcomes
shown in the postoperative radiographs (D). These cases underscore the essential
role of our hybrid 2D-3D approach in overcoming difficult clinical scenarios and
highlight its potential as a reliable intraoperative assistant.

. .
=
. - % .
(]
’

case [ case I1

Fig. 4. Clinical Case Analysis on Challenging Maxillary Molars. Each case includes:
(A) Intraoperative microscope view after access preparation, (B) predicted segmen-
tation results, (C) post-processed results incorporating CBCT, and (D) postoperative
radiograph. Case I illustrates calcified MB2; Case II features visually indistinct orifices.

5 Conclusion

In this paper, we proposed OrificeNet, a novel framework to address the critical
challenge of detecting concealed root canal orifices from intraoperative micro-
scope images. FExtensive experiments demonstrate that our framework signifi-
cantly outperforms state-of-the-art methods, showing strong robustness on chal-
lenging clinical and synthetic data. Ultimately, OrificeNet presents an effec-
tive and clinically-translatable solution to reduce the risk of missed canals and
enhance the success rate of root canal treatments.
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Abstract. Radiofrequency ablation is a minimally invasive technique
widely used for treating liver tumors, yet planning optimal probe tra-
jectories for multiple tumors remains a significant challenge due to the
complexity of avoiding critical structures and ensuring adequate tumor
coverage. However, it is crucial to treat as many tumors as possible in
one intervention to decrease patients’ hospitalization time. Furthermore,
utilizing a single probe for ablating multiple tumors on the same trajec-
tory reduces the number of probes used, and consequently, the risk of
complications, such as crossing critical structures or trajectory collisions.
In this scenario, probes are advanced to the most distant tumor, and sub-
sequent to conducting ablation, the probes are retracted to the proximal
tumor for an additional ablation.

We propose a novel trajectory planning algorithm for ablation proce-
dures, introducing an innovative multi-tumor planning strategy and force
field-based navigation. Our genetic optimization algorithm is guided by
a field derived from abdominal structures to enable efficient and safe
navigation through complex anatomy.

A retrospective analysis, performed on 18 patients from our in-house
dataset, with 1 to 4 tumors each, shows its usability in clinical scenar-
ios. Our algorithm produces safe, non-colliding, and clinically compli-
ant solutions for all cases in 5.7min on average and achieves a mean
coverage of 93.5% of tumors with 5 mm safety margin. Comparison on
single-tumor cases with existing automated methods demonstrates the
competitiveness of our algorithm. Furthermore, the method’s ability to
handle complex multi-tumor scenarios is a significant step toward clinical
implementation.
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1 Introduction

Radiofrequency ablation (RFA) is a widely employed method to treat tumors
in the liver or other solid organs. The method involves the insertion of stiff
probes into the tumor and the ablation of tissue around the uninsulated tip.
In the current clinical practice, the planning is done manually on a CT scan
with 1 mm slice thickness, focusing primarily on complete coverage, avoidance of
collisions with critical structures, and other trajectories. As the number of tra-
jectories increases, the associated complexity and time associated with planning
correspondingly rise. Consequently, in most clinics, RFA is applied exclusively
to small tumors. Stereotactic radiofrequency ablation (SRFA) utilizes a naviga-
tion system to enable the treatment of complex cases, such as large or multiple
tumors [2]. The technique can be combined with a pullback method, which facil-
itates the ablation of multiple lesions along a single trajectory. The probe is
initially advanced to the most distant target, where ablation is performed. Sub-
sequent lesions located along the same path are ablated during the retraction
of the probe, reducing the number of insertions. Our clinic deeply exploits SRFA
while treating tumors over 6 cm in diameter with ten trajectories and performing
over 200 procedures annually [1].

Automatic trajectory planning algorithms for ablation procedures navigate
multiple trajectories in the abdomen environment and, while adhering to the
clinical constraints (e.g. not penetrating critical structures), aim for maximal
coverage of the tumor and safety margin (in practice set to 5 mm). Since a single
RFA probe has a 10 mm ablation radius, it is appropriate solely for small lesions
with a diameter < 1 cm, and for larger lesions, multiple probes have to be used.
In the following, we present related work focusing on the planning of multiple
rigid trajectories for larger tumors. Villard et al. in 2005 investigated trajectory
planning for RFA and proposed a method capable of generating two trajectories
within approximately 10 min [13]. Li et al. employed a genetic algorithm NSGA-
IT [4] to optimize up to five trajectories with a 20 mm ablation zone radius [6].
Microwave ablation (MWA) is a closely related technique to RFA, with simi-
lar planning requirements; the principal difference lies in the size of the ablation
zone, which is generally larger in MWA. Li et al. presented an approach for MWA
enabling the computation of up to three trajectories [8]. Zhou et al. [15] pro-
posed a genetic algorithm to determine optimal ablation trajectories, which they
evaluated only on three cases without reporting the computation time. Liang et
al. proposed a constraint-based method utilizing the pullback technique [9]. A
heuristic-based method was introduced to enable rapid trajectory planning in
combination with the pullback approach [7]. An analogous technique to RFA
is cryoablation, which uses cooling of the tissue for tumor destruction. Auto-
matic planning for this method was developed by [5] using bioheat simulation at
the target points to determine the optimal probe placements. Trajectory plan-
ning methods have also been explored in the context of minimally invasive brain
surgery [3], or deep brain stimulation for epilepsy patients [11].
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2 Method

We propose a method based on a genetic algorithm (GA) for the simultane-
ous trajectory planning of multiple tumors. GA operates on a population of
candidate solutions, evolving them through crossover and mutation to gener-
ate improved populations. In the context of trajectory planning, it explores
the abdominal space by adjusting needle positions relative to critical structures
(CSs), the liver, and the tumor. As this navigation step constitutes the compu-
tational bottleneck, it will be the primary focus of this study.

We use unified non-dominated sorting genetic algorithm ITT (UNSGA-IIT) [12]
with reference directions in the objective space and tournament selection in
crossover. The overall structure of our proposed algorithm is based on our pre-
vious study that focused on optimization for single tumors [10]. Similarly to
our previous work, the search space is defined as the skin mesh and the tumors
with a safety margin for entry and target points of each trajectory, without
the need to predefine sets of such points. To extend the algorithm to multiple
tumor scenario and maintain reasonable computation time, we create a repul-
sive and attractive field from CSs and the tumors. These fields are then used in
the mutation operator to guide the trajectories.

We define seven reference directions as the eigenvectors of the objective space,
each corresponding to one of the seven objective functions. The objective func-
tions minimize the trajectory length, trajectory length in the liver (but keep
the trajectory longer than length of the active tip of the probe - 3cm), the
angle between the trajectory and the normal of the skin and liver capsule, the
number of trajectories, and maximize the tumor coverage and the length in
the tumor (complying with the pullback technique). Moreover, we optimize the
placement of entry points, aiming for a minimum separation of 10 mm, facil-
itating the placement of insertion guides. The constraints in our problem are
defined as the collisions of the trajectories with CSs and each other, the tumor
coverage, and a binary value indicating whether every tumor is treated. The last
constraint is implemented to avoid scenarios in which a small tumor remains
untreated due to the satisfactory coverage already provided by a larger tumor.
The source code of our algorithm is provided at https://git.i-med.ac.at/hno/
field-navigated-trajectory-planning/.

2.1 Abdominal Field Formulation and the Mutation Operator

The abdominal field is used to efficiently move and align the solution with the
CSs and the tumor. CSs exert a repulsive field, steering the trajectories away to
prevent collisions and avoid undesirable outcomes. In contrast, tumors generate
an attractive field that guides the trajectories inward. The respective fields are
computed as followss
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R=K=xI, (1)
F(I) = sigmoid (f) , (2)
G(I) = V(F), 3)

where T is the input image (binary, 1 where CS, 0 otherwise), K is the convolution
kernel; a 10 x 10 x 10 matrix of ones (11g9x10x10), * represents the convolution
operation, and s is the scaling factor. For our problem setting, we set the scaling
factor s to 100 to have a reasonable field strength. The convolution introduces a
gradient within the binary image, as the values peak within the CSs and linearly
decrease in the direction of the boundaries. Applying the sigmoid function to the
convolved result produces a smooth field F', allowing the computation of the gra-
dient G. Such gradient is zero at the centerline of CSs. However, in the algorithm,
the resulting field force is computed along the entire probe trajectory. Combined
with the highly asymmetrical nature of abdominal anatomy, this ensures that
the vanishing gradient does not pose practical limitations.

In the mutation process, we consecutively modify the candidate. First, the
algorithm calculates the coverage and the tumor parts that remain uncovered. In
case of insufficient coverage, the algorithm creates new trajectories. We empir-
ically set the threshold to 0.9, as this level of coverage allows the algorithm to
adequately distribute trajectories for full tumor coverage while avoiding excessive
probe usage. To generate new trajectories, we use two different setups. The first
one creates new trajectory with raycasting, where from a randomly picked non-
covered tumor point, we create multiple random lines to skin mesh and keep the
non-colliding one. The second approach picks an existing trajectory close to the
non-covered tumor volume and creates multiple trajectories around it in uniform
spacing in 515 mm distance.

The remaining steps of the mutation algorithm focus on refining the trajec-
tories. Initially, an attractive field generated by the tumors pulls each trajectory
toward them. Afterward, inter-trajectory interactions are introduced: trajecto-
ries attract each other to improve coverage, but repel if they come closer than a
predefined threshold, preventing collisions. Next, the trajectories are modified by
applying the repulsive field induced by CSs. As last, the trajectories are reshaped
to conform to clinical constraints, such as limiting their length to 150 mm; the
length of the RFA probe.

2.2 Algorithm Workflow

Due to the presence of many local minima and a vast search space in the problem
of trajectory planning of simultaneous ablation of multiple tumors, our method
incorporates guiding strategies to efficiently navigate in the search space and
achieve high-quality solutions quickly. We employ different optimization strate-
gies based on the combined volume of all tumors in a given case. For smaller
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total volumes, all tumors are optimized simultaneously. In contrast, for larger
volumes, a sequential strategy is adopted to ensure optimal coverage.

Algorithm 1. Sequential Optimization for Multiple Tumors

Input: T (Tumor set), eshort (Max. number of epochs for initial optimizations),
€long (Max. number of epochs for final optimization)
Output: S (Multiple solutions of possible trajectories)
1: S <« empty initial solution
2: if if |T'| <1 or totalVolume(T") < vipresh then
3: S« Optimize(T, S, €iong)

4: else > Use sequential optimization
5: Sort T by centroid-to-skin distance (deepest first)
6: Tseq +— empty set

T for tin T do

8: Add t to Tseq

9: if ¢ is not the last tumor then

10: S — Optimize(Tseq, S, €short)

11: else

12: S« Optimize(Tseq, S, €long)

13: end if

14: end for

15: end if

16: return S

Particularly, if the case includes multiple tumors with a combined volume
exceeding 2 cm?, we apply a sequential strategy that prioritizes deeper tumors
first. Specifically, tumors are sorted by the distance of their centroids to the
skin surface. The process, illustrated in Pseudocode 1, begins by optimizing
the trajectories for the deepest tumor. Then, it continues iteratively, adding
tumors to the optimization in descending order of depth. This aligns with the
pullback technique, where a single probe can treat multiple tumors along its path.
We start the optimization process with a limited number of maximum epochs
allowed. In the final optimization stage, the algorithm runs longer on the full
tumor set to refine the solutions, balancing quality and efficiency. Moreover, we
propose a strategy for gradually increasing the maximum number of trajectories
allowed throughout the optimization. We start with a reduced number, focusing
the algorithm on navigating around CSs. If coverage using the current maximal
number of trajectories remains suboptimal, the allowed maximum is increased.

3 Data

We used our in-house dataset from our university clinic with over 800 SRFA-
treated patients. We evaluated the method on 18 recent cases with a total of
33 tumors. After anonymization, liver, tumors, and vasculature were manually
segmented by a clinician and reviewed as sufficient by another clinician. Other
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abdominal structures were segmented automatically using [14]. The mesh pro-
cessing steps are analogous as in [10]. Rib meshes were inflated inferiorly to reflect
clinical practice of probe insertion superior to the next lower rib, minimizing the
risk of penetration of arteries.

X Computation time
Achieved coverage

All cases TV <10cm?® °
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Fig. 1. Boxplots of achieved coverage (left) and computation time (right). Coverage
results are presented with coverage and tumor margin on the x, y axis, for the entire
dataset, as well as for a subset consisting of small tumors, defined as those with a
volume less than < 10 mm?®. The right plot shows the computation time on the y-axis.

4 Evaluation

We evaluated the algorithm on Ubuntu with 8 x Intel i7-9700K CPUs. Our algo-
rithm proposed non-colliding solutions for all test cases and achieved tumor
coverage of 93.5% =+ 6.29 and 97.9% + 4.17 with 5 and 0 mm margin. Figure 1
presents the achieved coverage and the computation time on our clinical dataset.
The longest computation time was observed in the most complex case in our
dataset; a patient with two tumors with a joined volume of 33 cm?. The larger,
5cm tumor was located subcapsularly at the junction of segments 2, 3, and 4;
the second, 2.2 cm tumor was near a portal vein branch at the border of segments
4a and 5. Our algorithm achieved coverage of 80.3% (5 mm margin) and 83.3%
(Omm), compared to 77.9% and 81.9%, respectively, in the retrospective clini-
cal plan. Due to insufficient initial coverage, additional trajectories were added
during the procedure, highlighting the case’s complexity.

Figure 2 demonstrates the comparison between the retrospective clinical and
the automatic solution. The clinical solution achieved coverage of 73.9% and
92.1% of the tumor with 5mm and 0 mm safety margin, respectively. Our algo-
rithm produces a non-colliding solution in 6.2 min with coverage of 90.2% and
96.7%. The close alignment of the trajectories in the figure, along with the iden-
tical number of probes used in both the automatic and clinical plans (four),
emphasizes the clinical relevance of our approach.
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(N

Fig. 2. Comparison between the automatic plan (blue lines) and the clinical plan (green
lines) for two tumors treated using the pullback technique in top and side views. For
clarity, only the tumors without safety margins (red, blue), the skin (magenta), and
the liver (turquoise) are shown. Critical structures are omitted for clarity. Note that
darker regions on the liver surface result from mesh rendering artifacts. (Color figure
online)

4.1 Comparison with Previous Approach

To enable comparison with our prior method designed for single tumors [10],
we select seven solitary tumors and apply both algorithms to these cases for
evaluation of the performance.

Coverage comparison Number of trajectories Comparison of computation time
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Fig. 3. Comparison of the previous and the new method in coverage, number of trajec-
tories, and computation time. The dashed lines in the middle and right panels represent
the identity line (y=x), indicating equal performance between the two methods. Note
that in the last panel, the ranges of the x and y axes differ.

A visual comparison is presented in Fig.3. The number of trajectories pro-
posed by both methods was comparable. The mean achieved coverage was also
similar, with values of 97.5% for the new method and 97.4% for the previous
one. However, the new method achieved a higher median coverage and exhib-
ited fewer outliers. The mean computational time for the previous approach was
3.25 4 3.65 minutes, compared to 1.47 4+ 1.15 min for the proposed method. In
the right panel of Fig.3, data points positioned to the right of the identity line
indicate that the new method achieved faster computation times compared to
the previous approach.
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4.2 Comparison with Related Work

We compare our method on single tumor cases to recent work [8] for MWA
planning using a 40 x 30 x 30 mm ablation zone ellipsoid. They evaluated
performance on an in-house dataset, reporting tumor location and volume. For
comparison, we selected single-tumor cases from our dataset with similar location
and volume. Additionally, we indicate the proximity of CSs, such as vessels,
that further increases the complexity of trajectory planning. The comparison of
achieved coverage and computation time, together with trajectory features, is
presented in Table 1.

Table 1. Comparison of our approach and automatic planning for MWA [8]. The first
columns present the tumor location in Couinaud segments and immediate structures
(IVC - inferior vena cava, PV(B) - portal vein (branch), D - diaphragm, P - pericardium,
C - capsule), the tumor diameter (D), and volume (V). The first column in the Results
section presents the coverage of tumors with 5 mm safety margin (C). For our method,
we report the coverage for safety margins of 5 and 0 mm before and after slash. The
last columns provide the number of probes (N), mean length of the trajectories (L),
vertical deflection and liver normal angle within the corresponding CT slice for [8] while
for us the mean trajectory angle to the normals of liver and skin, and lastly, the
computation time (T).

Test tumor Results

Location D (mm) V (cm®) C(%) N L (mm) Angle(°) T (s)

[8] 1 23.2 4.68 99.4 2 1190  25/0.3 196
Ours 1 (IVC,PV) 19 2.94  99.0/100 3  138.66 225 83.1
[8] 4 18.4 2.73 100 1 682 2.8/5.6  28.1
Ours 4 (D,P,C) 18 1.86  99.8/100 4  97.38 32.4 17.5
[8] 5 9.7 0.28 100 1 812 3.7/01 226
Ours 5 20 1.39  100/100 4  88.2 38.5 30.6
[8] 6 18.2 1.18 100 1 666 2.1/6.6 12,6
Ours 6 (C) 17.4 14 99.5/100 3  67.3 32.4 18.6

5 Discussion and Conclusion

We have proposed a planning algorithm for multi-tumor scenarios based on
UNSGA-III, wherein the search is directed by fields generated by critical struc-
tures, tumors, and trajectories. The algorithm demonstrates high stability, with
consistent convergence across multiple runs. Owing to its formulation, our app-
roach for subsequent trajectory planning in cases of multiple large tumors has
demonstrated efficacy in addressing complex scenarios and strategizing for the
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pullback procedure. Thus, it shows strong potential for clinical translation. The
evaluation shows the consensus of our approach with clinical practice and its
competitiveness with related work, despite optimizing additional trajectories
due to optimizing with a smaller ablation zone. In addition, our method suc-
cessfully plans trajectories for tumors in complex anatomical regions, including
those near vascular structures or located deep within the liver; in the segment 1.

In future work, we aim to address the limitations of our algorithm in handling
large tumors over 6 cm, which remain a challenging scenario. Moreover, we want
to complete our algorithm with a software designed to assist physicians in their
daily tasks, emphasizing a user-friendly and intuitive interface.
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Abstract. The rapid growth of multimodal medical imaging data
presents significant storage and transmission challenges, particularly in
resource-constrained clinical settings. We propose NEURAL, a novel
framework that addresses this by using semantics-guided data com-
pression. Our approach repurposes cross-attention scores between the
image and its radiological report from a fine-tuned generative vision-
language model to structurally prune chest X-rays, preserving only
diagnostically critical regions. This process transforms the image into
a highly compressed, graph representation. This unified graph-based
representation fuses the pruned visual graph with a knowledge graph
derived from the clinical report, creating a universal data structure
that simplifies downstream modeling. Validated on the MIMIC-CXR
and CheXpert Plus dataset for pneumonia detection, NEURAL achieves
a 93.4-97.7% reduction in image data size while maintaining a high
diagnostic performance of 0.88-0.95 AUC, outperforming other base-
line models that use uncompressed data. By creating a persistent,
task-agnostic data asset, NEURAL resolves the trade-off between data
size and clinical utility, enabling efficient workflows and teleradiology
without sacrificing performance. Our NEURAL code is available at
https://github.com/basiralab/NEURAL.

Keywords: Multimodal Radiology Data * Vision-Language Models -
Image Compression - Graph Neural Networks

Introduction

®

Check for
updates

The volume of medical imaging data is expanding rapidly, with over two billion
chest X-rays (CXRs) performed annually worldwide [1]. Each exam typically
includes both an image and a radiology report, resulting in massive multimodal
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datasets that can reach terabytes in size. This data is vital for training AT mod-
els and supporting clinical workflows, but its scale creates serious challenges in
real-world deployment. Many hospitals, especially in low-resource settings, face
storage limitations, slow networks, and limited computing power [13]. These chal-
lenges delay timely image interpretation, making it difficult to integrate AT tools
into clinical practice, and limit the reach of remote diagnostic services. Without
effectively addressing these barriers, the full benefits of medical imaging Al may
remain unrealized in real-world clinical settings [9].
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Fig.1. End-to-end NEURAL pipeline for report-guided image pruning and graph-
based clinical diagnostics.

Current efforts to manage this data complexity largely follow two distinct
paradigms, each with fundamental limitations. The first is model-centric, focus-
ing on accelerating computation. This ranges from established network prun-
ing methods like CheXPrune [8] to more recent, sophisticated techniques that
use language guidance to dynamically discard irrelevant tokens during inference
[2,16]. While these approaches can significantly reduce the computational foot-
print of a model, their objective is transient model acceleration, not persistent
data reduction. They still expect access to the original, full-resolution image for
every task, thereby failing to alleviate the core issues of data storage and trans-
mission. The second paradigm, conventional image compression, uses methods
like JPEG to reduce file size but remains agnostic to clinical content, risking
the degradation or loss of diagnostically critical details [5]. This presents a stark
trade-off: one can either optimize the model while leaving the data logistics
problem unsolved, or compress the data at the risk of compromising its clinical
integrity.
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To resolve this trade-off, we propose a novel framework centered on semantics-
guided data compression. Our approach leverages the rich clinical narrative of the
radiology report as a semantic blueprint to guide a targeted, structural compres-
sion of the associated image. Unlike methods that first downsize the image and
risk losing information, our framework operates on the full-resolution image data,
ensuring fine-grained visual details are considered during the pruning process.
This identifies and preserves diagnostically critical regions while systematically
discarding redundant information. The final output is not merely a compressed
image with its radiological report, but a structured, multimodal representation
in the form of a graph, which can be serialized into a lightweight format like a
pickle file for efficient and lossless transmission.

This graph-based representation acts as a universal data structure that is
inherently extensible. It is designed to seamlessly incorporate additional data
types in the future, such as temporal clinical data or MRI scans, and to effec-
tively model the complex interactions between them. Crucially, as we show in
Sect. 3 (Parts B and C), this unification into a graph format eliminates the need
for complex, task-specific models that handle heterogeneous inputs. Instead, a
single, much simpler graph-based model can be applied for diverse downstream
tasks, achieving comparable performance to other methods while operating on
the highly compressed data.

Our pipeline operates on image text pairs from the MIMIC-CXR [7] and
CheXpert Plus [3] dataset. Each image is first represented as a graph of visual
patches (Refer Sect.3-Part A). During fine-tuning, a ClinicalT5 [12] decoder is
trained to generate the corresponding ground truth report from these visual
inputs. The core innovation of our approach is to repurpose the cross-attention
scores, calculated between full resolution image patches and clinical text tokens,
as explicit signals for structurally pruning the image-graphs. We then evaluate
the fidelity and clinical utility of the resulting compressed graph through two
downstream tasks: (1) radiology report generation and (2) pneumonia classifi-
cation. As a result, this work makes four key contributions:

1. We introduce the first semantics-guided framework for radiological
image compression that uses cross modal attention from a generative vision
language model to explicitly guide structural pruning of medical images,
enabling highly targeted compression.

2. Our compression framework is task-agnostic, enabling the compressed data
to be stored and utilized across downstream applications.

3. We develop a rigorous dual-validation strategy, using both report gener-
ation and disease classification to evaluate the fidelity and clinical relevance
of the compressed representations.

4. Our framework is designed for future extensibility, leveraging a power-
ful betweenness centrality fusion to create a unified graph. This strategy is
highly efficient, connecting modalities via a single semantically-meaningful
link to avoid quadratic complexity , which in turn allows for the natural
incorporation of new data types and simplifies downstream models.
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2 Related Work

While NEURAL shares a core mechanism with contemporary language-guided
pruning methods like LVPruning [16] and PuMer [2], their foundational objec-
tives and task-dependencies diverge significantly. The primary goal of these
other approaches is transient model acceleration, where pruning is intrinsically
linked to a specific, concurrent downstream task. For instance, in an instruction-
following model like IVTP [6] and ATP-LLaVA [18], the visual tokens are pruned
based on the immediate query, making the pruning a consequence of that sin-
gle task. NEURAL’s objective, in contrast, is persistent data compression. It
aims to create a smaller, permanent, and task-agnostic data asset that addresses
the more fundamental challenges of data storage and transmission, particularly
within resource-constrained clinical environments.

This distinction in purpose leads to a crucial divergence in methodology
and generalizability. For other methods, the pruning is an ephemeral part of
an inference pipeline, re-calculated for each new task or prompt. As a result, a
different clinical application requires pruning of the full image specific to that
task. NEURAL’s methodology, however, is designed to be performed once; it uses
the holistic clinical narrative of a ground-truth report to create a single, static,
compressed graph. This resulting data asset is inherently versatile. Because the
pruning is guided by the comprehensive report rather than a narrow downstream
task, the compressed graph is a general-purpose representation that can be used
for any number of subsequent clinical applications, be it pneumonia classification,
report generation, or other diagnostic queries, without modification.

3 Methodology

Our framework proposes a semantics-guided, 3-stage approach to compress med-
ical images and unify multimodal data into a single graph representation for
downstream applications. The process begins by dividing a full-resolution chest
X-ray into non-overlapping patches. Subsequently, a generative vision-language
model is fine-tuned to create a radiology report, generating cross-attention scores
that link text to the image patches. These scores are then repurposed to struc-
turally prune the image, distilling it into a sparse graph containing only the most
salient visual regions. Finally, this pruned visual graph is fused with a knowledge
graph derived from the clinical report, creating the unified multimodal graph for
efficient downstream diagnostics.

A) Joint Image Pruning and Report Generation. A central challenge
in multimodal medical AT is bridging the semantic gap between the dense, low-
level pixel data of a radiograph and the sparse, high-level concepts expressed in a
clinical report. Our methodology addresses this by training an encoder-decoder
module for a dual purpose: not only to generate coherent radiology reports but
also, through this process, to produce a fine-grained alignment map identifying
the most clinically salient image regions. This transforms the standard task of
report generation into a tool for extracting the most important semantically
aware visual regions in the image.
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Our approach begins by processing a chest radiograph (CXR), I € RE*Wx3,
Following the Vision Transformer (ViT) paradigm [11], the image is divided into
a sequence of N non-overlapping patches. These patches are linearly embedded,
along with 2-dimensional positional embeddings for retaining global context,
and fed into a Swin encoder [11]. This produces a sequence of patch-level feature
representations, Vimg = {v1,v2,...,vn}, where each v; € RPvs captures visual
information from a specific image region. To make these features compatible
with our language model, we project them into the text embedding space using
a dedicated linear projection layer, resulting in the final visual embeddings F.;s €
RNX Dyext .

The core innovation lies in how we leverage these visual embeddings. We
fine-tune a pre-trained clinical language model decoder (Clinical-T5-Base)
[12] on report generation, conditioning it directly on the visual embeddings
Eis. During fine-tuning, we employ a teacher-forcing strategy: given an image
I and its ground-truth report R = {t1,ta,...,tar}, the decoder learns to predict
each token t; based on the full set of visual embeddings Ei; and the preced-
ing ground-truth tokens {t1,...,t;_1}. This training encourages the model to
establish direct, meaningful correlations between textual concepts and the spe-
cific image patches supporting them. A critical byproduct is the cross-attention
mechanism, which produces attention scores at each decoding step quantifying
the importance of each image patch for generating each token. Unlike conven-
tional uses of attention for feature fusion, we repurpose this dynamic, context-
aware attention map as a precise, data-driven signal to guide structural pruning
of the visual graph, as detailed in the following section.

B) Image-Text Cross-Attention Score-based Pruning. In medical
imaging, treating all parts of an image with equal importance creates a large vol-
ume of redundant data. This conventional method is inefficient and can obscure
critical diagnostic clues within the noise. Our work introduces a new approach
in radiological image analysis by leveraging the powerful semantic connection
between an image and its medical report to intelligently filter this information.
This process distills the dense image graph into a sparse, meaningful subgraph.
By doing so, we create a focused map containing only the most clinically relevant
visual evidence, leading to more efficient and accurate diagnostic models.

To facilitate this, the pruning mechanism repurposes the cross-attention
scores generated during the report generation phase described previously. For
each token t; in the ground-truth report R, the decoder produces an attention
weight vector, o;; = {a;1,059,...,0; N}, where the scalar «;; quantifies the
importance of the i-th image patch, v;, to generating that specific token. To
determine the overall relevance of each patch to the entire clinical narrative, we
aggregate these scores across all tokens. The cumulative importance score .S; for
each patch v; is computed as: 5; = Zjle o ;. This aggregated score S; serves
as a robust proxy for the clinical salience of the corresponding image region.

We define a threshold, 7, and construct a new, pruned set of vertices, i’mg,
by retaining only those nodes whose cumulative attention scores exceed this
threshold: V;,,, = {vi € Vimg | Si > 7}. The threshold 7 can be determined

img
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empirically or set dynamically to retain a top-k percentage of the most salient
patches, providing precise control over the desired level of compression. The
resulting pruned graph, denoted as G in Fig.1, is a semantically compressed
representation of the original image. It is no longer a generic grid of patches but
a customized data structure shaped by the clinical text to retain only the most
critical visual information, thereby reducing data size and focusing subsequent
analyses on diagnostically significant regions.

C) Unified Multimodal Graph-Enhanced Diagnostics. The final stage
of our framework aims for a holistic diagnostic capability, moving beyond superfi-
cial feature fusion toward true structural integration of modalities. We unify our
pruned visual graph, G, with a structured representation of the clinical text.
Simply using the raw report would overlook the rich interdependencies between
medical concepts and image patches, and would require a multimodal model
for handling text and graph simultaneously. We therefore transform the clinical
narrative into a textual Knowledge Graph (KG), G2. Using a Biomed VLP-CXR-
BERT model used in [4], we extract medical findings and entities as nodes and
represent their semantic relationships as edges. This structured representation
allows the model to reason explicitly about how clinical concepts relate, rather
than processing the report as a flat sequence of tokens.

We construct a knowledge graph Go from the report, and fuse it with the
visual graph G7, and then pass the combined structure through a MPNN for
reasoning. The fusion is performed by connecting the nodes with the highest
betweenness centrality from each graph, creating a semantically meaningful link
between the two modalities. While other approaches, such as connecting all
nodes based on cross-attention scores with edge weights, are possible, we choose
to add only one edge to avoid the quadratic increase in complexity. This design
supports efficient structural fusion, promoting interpretability and enabling a
more context-aware multimodal diagnostic process.

To reason over this heterogeneous graph, we experimented with both homo-
geneous and heterogeneous graph neural network architectures. While heteroge-
neous GNNs preserve modality-specific semantics more explicitly, we found that
their added complexity and training overhead did not yield performance gains
significant enough to justify their use in this context. Instead, we adopt a stan-
dard Message Passing Neural Network (MPNN). Its iterative message-passing
mechanism enables each node, whether an image patch or a clinical concept,
to refine its representation based on both its neighborhood and its cross-modal
links. This modeling choice strikes a practical balance between computational
efficiency and representational richness.

At inference time, we consider two options: using the decoder to generate the
text or directly using the textual report from the dataset. The choice depends
on the specific requirements of the clinical setting, whether the hospital prefers
to manage image-report pairs or rely solely on a compressed image graph for
inference.

Why Graphs? Operating over a graph data structure offers significant
advantages for both data storage and downstream tasks. First, it enables future
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extensibility by providing a unified framework that can naturally incorporate
additional modalities, such as clinical temporal data and MRI, facilitating the
modeling of interactions between heterogeneous data sources. Second, it stan-
dardizes inputs for downstream models, allowing them to work with a consistent
graph format rather than a complex mixture of images, text, and temporal sig-
nals, thereby simplifying the input pipeline. Finally, the use of a cross-attention
mechanism allows for efficient learning by projecting multimodal representations
onto a shared low-dimensional manifold, enabling even simple message-passing
neural networks (MPNNs) to effectively learn decision boundaries with relatively
few parameters.

4 Experiments and Discussion

We conduct a comprehensive set of experiments to validate our proposed frame-
work. Our evaluation is designed to answer three critical questions: (1) How
effectively our method performs after data compression compared to established
baselines? (2) Does the compressed graph representation retain sufficient clini-
cal information for high-fidelity downstream tasks? (3) How does the quality of
the textual guidance impact the trade-off between compression and diagnostic
accuracy? We demonstrate that our approach achieves an unprecedented level
of compression while maintaining state-of-the-art diagnostic performance, and
we analyze the key factors influencing its behavior through extensive ablation
studies.

Datasets. Our framework was rigorously evaluated using two distinct multi-
modal radiology datasets: MIMIC-CXR [7] and CheXpert Plus [3]. To ensure the
integrity of our results and prevent data leakage, we enforced a strict patient-level
separation, guaranteeing that only one imaging study per patient was included,
thus preventing any patient’s data from appearing in both training and testing
splits.

The primary benchmark for classification was based on the MIMIC-CXR
dataset, comprising 377,000 chest X-ray images. From this corpus, we identi-
fied 40,894 images with definitive pneumonia labels (24,338 negative and 16,556
positive), yielding a positive sample ratio of 40.5%. To better reflect the class
imbalance typically seen in clinical practice, we constructed a more challeng-
ing dataset by sampling 10,000 of these labeled images to create a distribution
with a pneumonia prevalence of only 15%. This allowed for a rigorous evalua-
tion of model performance in detecting a sparsely represented target class. For
external validation and assessment of generalization, we additionally utilized the
CheXpert dataset. From its full set of 223,462 radiographs, we selected the 1,296
images that were explicitly labeled for pneumonia, providing a focused test set
drawn from a distinct patient population. Finally, we divide the datasets into
training (70%), validation (15%) and testing (15%) sets.

Baselines. We evaluated our framework for generating radiological reports
using two other models. The RGRG [17] method detects anatomical regions
in chest X-rays and generates region-specific sentences grounded on predicted
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bounding boxes, enhancing explainability and interactivity. CvT2DistilGPT2
[14] improves report generation by warm-starting its encoder with a Convo-
lutional vision Transformer (CvT-21) pre-trained on ImageNet-21K and its
decoder with DistilGPT2, resulting in more accurate and radiologist-like reports.

For the pneumonia detection task, we chose models that utilize both text as
well as images for a fair comparison with NEURAL: CheXMed [15] is a multi-
modal algorithm for pneumonia detection that fuses features extracted from X-
ray images via CNN and clinical notes processed through Named Entity Recogni-
tion into a combined representation for classification. RMT (Robust Multimodal
Transformer) [10] assesses pediatric pneumonia severity by integrating X-rays
and medical records using a Transformer architecture with multi-task learning
and mask attention to handle missing data, achieving superior performance in
multimodal settings.

Compression and Diagnostic Performance. Our framework strikes an effec-
tive balance between extreme data compression and high clinical accuracy, out-
performing traditional approaches. As shown in Table 2, our method achieves a
97.7% reduction in data size by pruning the image graph down to just 2.3% on
MIMIC-CXR dataset and 93.4% reduction in CheXPert dataset of its original
nodes. Despite this significant compression, the AUC remains high at 0.947 and
0.875 for MIMIC-CXR and CheXPert datasets, surpassing the performance of
other multimodal approaches that combine text and image inputs. While we
initially use the radiology report generator to learn cross attention scores for
pruning, it can also be leveraged to generate reports, eliminating the need to
store original radiology texts. However, generating reports from pruned nodes
does lead to a drop in performance, as reflected in lower AUC scores.

Table 1. BLEU-2 Scores for Radiology Report Generation.

Model MIMIC-CXR | CheXpert | Model Params | Image Resolution
RGRG [17] 0.21 0.15 220M 512x512
CvT2DistilGPT2 [14] |0.09 0.08 102M 384x384
NEURAL (Ours) 0.23 0.18 308M Full

NEURAL (Pruned) |0.19 0.16 308M Pruned

Report Generation Quality. Although report generation is primarily used
to extract cross attention scores for pruning, we also assess the quality of the
generated reports to ensure the language model remains coherent. As shown
in Table 1, our fine-tuned Clinical-T5 model achieves strong performance on the
BLEU-2 metric, comparable to other models of similar size [14,17]. This suggests
that our pruning strategy is guided by clinically meaningful and coherent text
generation. In contrast to prior works that reduces image resolution, our patch-
based method operates on full-resolution images, enabling the encoder to retain
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fine-grained visual details. We also evaluate Clinical-T5 on the reduced patch set,
using a compression ratio similar to that in Table 2. While the BLEU-2 scores
drop relative to the full data, the model still performs reasonably well, indicating
some loss of coherence due to the pruned patches that have low cross-attention
scores.

Table 2. Pneumonia Detection Performance (AUC) Across Datasets. CI references
to Max-Compression on images, GT refers to the use of Generated Text. Results are
defined as AUC vs % Compression

Model MIMIC-CXR | CheXpert
CheXMed [15] 0.939, 0% 0.816, 0%
RMT [10] 0.915, 0% 0.869, 0%
NEURAL (No Pruning) |0.963, 0% |0.902, 0%
NEURAL (CI) 0.947, 97.7% |0.875, 93.4%
NEURAL (CI 4+ GT) 0.891, 97.7% [0.838, 93.4%

Ablation Study: Pruning Ratio vs. AUC for Pneumonia Detection Average Cross-Attention Score by Rank

Praning Ratio () st sor Gt 10 Low
Fig. 2. Figure on the left shows the ablation study of varying the pruning ratio on
three separate tasks for MIMIC-CXR dataset. Figure on the right shows the average
cross-attention scores vs rank of the patch inside the image for the CheXpert and
MIMIC-CXR datasets

Ablation Study. We analyze how varying the pruning ratio affects diagnostic
accuracy. As shown in Fig.2 (Left), retaining 2.3% of image patches already
yields a strong AUC of 0.95. Increasing the retention to 10% results in only a
slight gain (+0.01 AUC), indicating diminishing returns. This justifies our design
choice: 97.7% compression delivers substantial efficiency with minimal impact
on performance. Moreover, we demonstrated that removing text information
entirely for prediction, combined with pruning over 90% of the data, leads to a
substantial drop in performance. This highlights the critical role of text tokens
in pneumonia detection. Since the other two models do not support unimodal
input like NEURAL, we were unable to evaluate their performance using only
image data.

To better understand why selecting the top 2.3% of patches is effective, we
analyzed the cross-attention scores of the image patches. For each image, we
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ranked the patches in descending order based on their cross-attention scores.
Then, for each rank, we computed the average score across all images and visual-
ized the results in Fig. 2 (Right). The plot reveals that the top 20 ranked patches
exhibit significantly higher attention scores, which then drop sharply to near
zero. These 20 patches correspond to the top 2.3% patches across the MIMIC-
CXR dataset. Similarly, in the CheXpert Plus dataset, a larger proportion of
patches exhibit high attention scores, resulting in less aggressive compression
compared to the MIMIC-CXR dataset.

5 Clinical Implications and Conclusion

Our method enables a 93-97% reduction in image size with minimal loss in task
performance, offering significant advantages for clinical imaging workflows. This
compression greatly reduces storage demands in Picture Archiving and Commu-
nication Systems (PACS) and supports efficient teleradiology in low-bandwidth
or resource-constrained environments. The pruned image graphs can be stored in
lightweight formats (e.g., pickle) and reused for a variety of downstream tasks.
Since the pruning is driven by a task-agnostic report generation model, the
approach remains generalizable and adaptable to multiple clinical applications.
Unlike prior work that reduces image resolution, our patch-based method pre-
serves full image detail, enabling better retention of fine-grained visual features.

In addition, our fine-tuned Clinical-T5 model can generate coherent and clin-
ically meaningful radiology reports directly from the compressed inputs. This
reduces the reliance on storing large, paired imagereport datasets and simplifies
data management in clinical research and deployment settings. Although some
drop in report quality is observed when using heavily pruned inputs, the model
still performs reasonably well, demonstrating the effectiveness of our pruning
strategy. Overall, this enables scalable report generation with minimal over-
head. In future work, we aim to extend this framework to other data types,
such as temporal or volumetric imaging, and to design models that can oper-
ate directly on compressed graph representations. This would move NEURAL
toward a more efficient, generalizable, and end-to-end solution for multimodal
clinical data analysis.
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Abstract. Deep learning holds promise for supporting radiologists by
addressing challenges such as high workloads, increasing imaging vol-
umes, and inconsistencies in image interpretation. However, current mod-
els require extensive annotations to work efficiently. The annotation of
3D medical images demands substantial time and expert effort, restrict-
ing the scalability of clinical AI applications. This work explores whether
radiology reports, which are readily available and semantically rich, can
serve as weak supervision for medical image segmentation. We investigate
a contrastive vision-language model trained to align 3D computed tomog-
raphy (CT) scans with free-text reports and probe the resulting rep-
resentations using interpretability techniques. By analyzing attribution
patterns extracted from the model, we assess whether it captures spa-
tially meaningful signals despite lacking segmentation labels. This app-
roach aims to reduce reliance on manual annotations and move toward
scalable, label-efficient segmentation pipelines. The resulting code and
comprehensive 3D visualizations can be found at https://github.com/
injardav/CT-CLIP-UT.

Keywords: CLIP - Medical Imaging + Weak Supervision + CT + VLP

1 Introduction

Deep learning has advanced medical image analysis, particularly in classifica-
tion and segmentation tasks [1]. However, it still relies heavily on large anno-
tated datasets, which is especially problematic for 3D imaging, where manual
segmentation is labor-intensive and costly [2]. In contrast, radiology reports,
which often accompany computed tomography (CT) scans, are routinely writ-
ten by radiologists and offer a rich, underutilized source of weak supervision.
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Recent de-identified datasets that pair 3D CT scans with free-text reports have
made it feasible to explore multimodal learning at scale [3,4]. While vision-
language models trained with Contrastive Language-Image Pretraining (CLIP)
have shown strong generalization in natural image domains [5], their potential
in clinical settings remains underexplored, especially in 3D modalities.

In this work, we study whether CLIP-style models can facilitate weakly super-
vised segmentation in 3D CT scans by leveraging textual supervision in the form
of full reports. Although these models are trained to align entire reports with
CT scans, we hypothesize that this alignment is primarily driven by pathology-
related content, as it represents the most distinctive and case-specific information
within the reports. To test this, we adapt a selection of widely-used attribution
methods and apply them to a pretrained model to evaluate whether image-text
alignment can reveal meaningful spatial structures in the scans and, more specif-
ically, which attribution methods are suitable for this task.

In summary, our contributions are: (1) we investigate the use of CLIP-style
vision—language models for weakly supervised segmentation in 3D CT scans
by adapting and evaluating several attribution methods to assess image-text
alignment; and (2) we release our code publicly to support reproducibility and
further research.

2 Background

This section reviews the use of vision—language models in CT imaging and out-
lines attribution methods for interpreting CLIP-style models in general.

2.1 Vision-Language Pretraining

Vision-language pretraining (VLP) utilizes contrastive learning between image-
text pairs to acquire generalizable features across both modalities in a weakly
supervised manner [5]. The application of VLP in the medical domain is expand-
ing rapidly [6]. However, the majority of existing research remains focused on
X-ray imaging, primarily due to the greater availability of annotated datasets
and the lower computational cost associated with 2D images compared to 3D vol-
umetric images. Additionally, the inherent complexity of processing volumetric
data further limits the adoption of CT scans in VLP research.

To mitigate these challenges, some VLP approaches for CT imaging use only
small 3D patches of the scan, as demonstrated in CLIP-Lung [7]. However, this
typically requires prior knowledge of relevant regions of interest (ROIs) in order
to extract informative patches. This knowledge is often unavailable without addi-
tional annotations. Therefore, reliance on ROI annotations limits the applica-
bility of such methods in fully weakly supervised settings. Similarly, CT-GLIP
[8] reduces task complexity by relying on pre-existing organ segmentations and
training a CLIP-based model on selected scan subsections.

This highlights the significance of CT-CLIP and CT-RATE, recently intro-
duced by Hamamci et al. [3]. CT-CLIP is the first fully 3D transformer-based
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VLP model for CT imaging, trained on CT-RATE, a unique dataset compris-
ing approximately 25,000 chest CT scans paired with corresponding radiology
reports. Due to these characteristics, CT-CLIP was selected as the foundational
model for evaluating various attribution methods in our study.

2.2 Attribution Methods for CLIP-Type Models

CLIP demonstrates strong zero-shot capabilities, but interpreting its outputs,
and deriving weakly supervised segmentations, relies on attribution methods,
which have been developed primarily for natural images and for classification
models. Therefore, some of these methods need modifications to work on CLIP-
style models.

Attention-based attribution techniques, such as visualising self-attention
maps or attention rollout [9], can easily be applied to CLIP image encoders.
However, attribution methods, which rely on gradients or classification scores,
usually need modifications to be adapted to CLIP style models, since CLIP
outputs feature vectors and not class probabilities. Instead, a cosine similarity
between the image and accompanying text prompt vector can be used in place
of a class probability.

Some popular attribution methods have also had additional CLIP specific
modifications. In recent CLIP-segmentation frameworks such as CLIP Is Also
an Efficient Segmenter [10], Grad-CAM has been enhanced with techniques like
softmax-over-attention, class-aware background sets, a real-time affinity module,
and confidence-guided loss to produce high-quality pseudo-masks. Also Score-
CAM [11] has had its CLIP specific implementation gScoreCAM [12], which
uses gradients to rank feature maps and selects only the most influential for
attribution map creation, speeding up the process and making it less noisy.

Despite the success of attribution methods in 2D vision tasks, none of these
techniques, to the best of our knowledge, have been adapted for volumetric
medical CLIP models. Our work addresses this gap by evaluating variety of
common attribution methods (attention maps, attention rollout, integrated gra-
dients, GradCAM, occlusion) on CT-CLIP, to assess their ability to extract weak
segmentations maps of pathologies from 3D CT scans.

3 Methods

This section describes the vision-language model architecture used in our exper-
iments and outlines the adaptations required to apply spatial attribution tech-
niques to a contrastively trained model. Each method is described in the order
it appears in the study, with emphasis on how it interfaces with the unique
structure of CT-CLIP.

3.1 3D Vision-Language Model

Our experiments are based on CT-CLIP [3], a contrastively trained large vision-
language model for volumetric chest CTs. CT-CLIP uses a volumetric Vision
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Transformer CT-ViT [13] to encode 3D CT scans and a radiology-adapted BERT
model [14] to encode full radiology reports. During training, the model learns
to project paired image-text inputs into a shared embedding space using a sym-
metric contrastive loss. Importantly, CT-CLIP is not trained for segmentation
or classification; it lacks token-level supervision and does not output class logits.

The CT-ViT encoder operates on non-overlapping 3D patches extracted from
the input scan. Each patch is tokenized and passed through a hierarchical trans-
former. First, the patches are processed by a spatial transformer that encodes
intra-slice relationships, followed by a causal transformer that captures inter-slice
dependencies across the volume. The image encoder outputs a set of volumet-
ric patch tokens, which are pooled and projected to yield a fixed-length image
embedding. A similar process is applied to the input text using the language
encoder. The cosine similarity between image and text embeddings serves as the
models alignment score.

3.2 Attribution Methods

We apply five attribution methods to assess spatial alignment between visual
inputs and text descriptions. Our hypothesis is that pathology-related regions
in chest CT volumes significantly influence both the image and text feature
representations produced by the model. Consequently, we expect that attribution
methods can highlight these regions, offering a form of weak localization. Each
method is adapted to produce 3D attribution maps over the input volume, using
either internal model activations or gradient-based mechanisms. In all cases,
similarity is computed between the image embedding and a fixed text embedding
obtained from the full radiology report, and used in gradient-based methods.

Attention Maps. Attention weights from the final layer of the CT-ViT encoder
are extracted to assess intra- and inter-slice token interactions. Attention scores
from both the spatial and causal transformers are extracted and grouped by
attention head and layer. Each attention matrix encodes token-to-token rele-
vance within its respective branch. No aggregation or projection is performed
beyond the encoder output; these maps are retained for head-wise and layer-
wise comparison to investigate whether any interpretable or consistent spatial
patterns emerge.

Attention Rollout. Attention rollout approximates the cumulative propaga-
tion of attention across transformer layers [9]. We compute rollout separately
for the spatial and causal transformers of the CT-ViT model. Attention matri-
ces are averaged across heads within each layer and combined recursively across
layers using matrix multiplication, with residual connections approximated via
identity weighting.

Unlike conventional attention rollout, which centers attention on a special
classification token ([CLS]) used in classification models, CT-CLIP has no such
token. Instead, attention scores are averaged across all spatial tokens in the final
rollout matrix to produce a single 3D volume per transformer module. These are
reshaped and upsampled to generate full-resolution attribution maps.
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Integrated Gradients. Integrated gradients attribute voxel-level importance
by computing gradients of the image-text similarity along a linear interpola-
tion path between a baseline and the input scan [15]. The input baseline is a
completely black CT volume (all voxels set to minimum intensity). A series of
interpolated volumes is constructed along a linear path from the baseline to the
original scan. At each step, the similarity score is computed, and its gradient
with respect to the input image is recorded.

The final attribution map is obtained by averaging the gradients across steps
and scaling by the input difference. This yields a voxel-wise relevance map reflect-
ing how much each input voxel contributes to the image—text similarity score.
The output is normalized and resized to match the input CT resolution.

Grad-CAM. Grad-CAM is adapted to the CT-CLIP architecture by targeting
internal transformer activations [16]. We apply Grad-CAM to three different
layers: both final layers of spatial and causal transformers and the final layer of
the whole encoder—Vector Quantization (VQ) layer, which discretizes feature
representations using a learned codebook. Gradients of the cosine similarity score
are calculated with respect to the selected transformer activations, averaged
spatially to obtain channel-wise weights, and used to compute a weighted sum of
the feature maps. The result is passed through ReLU activation and normalized
to produce an attribution map.

Occlusion Sensitivity. Occlusion sensitivity [17] is implemented by systemat-
ically masking small subvolumes of the scan and measuring the resulting change
in image—text similarity. For each occluded region, we compute the cosine simi-
larity between the modified image and the fixed text embedding. The decrease in
similarity is treated as the attribution score for the masked region. Aggregating
these scores across the scan yields a 3D attribution map indicating the relevance
of different spatial regions.

3.3 Evaluation

Given the exploratory nature of this study and the absence of segmentation labels
in the CT-RATE dataset, our evaluation is primarily empirical. We assessed the
quality of the extracted 3D heatmaps through visual inspection, focusing on two
main questions: (1) Do the methods concentrate attention in specific anatomical
regions (lungs for chest CT dataset), or is the attention diffusely distributed
across the entire scan? (2) Do these approaches show promise in the context of
3D medical imaging segmentation, or do they appear ill-suited for this task?

4 Results

We evaluated the spatial attribution behavior of the CT-CLIP model across five
interpretability methods, assessing their ability to recover semantically meaning-
ful and spatially localized activations from image—text alignment. Each method
is applied to a set of held-out 3D CT scans from the CT-RATE dataset, using
full radiology reports.
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Attention Rollout Integrated Gradients Grad-CAM Occlusion

Fig. 1. Attribution methods applied to an example CT scan of a patient with lym-
phadenopathy and lung nodules. Representative axial slices are shown to illustrate
model interpretations across the volume. We show the causal transformer variant of
attention rollout and the VQ-layer Grad-CAM. Additional variants—such as spatial
attention rollout and Grad-CAM applied to spatial and causal transformer layers—are
available in the GitHub repository.

4.1 Qualitative Attribution Results

This section reports our qualitative findings in the order of method application.
Visual examples of key results are provided in Fig. 1. Visualizations of full 3D
attribution maps can be seen in the GitHub repository.

Attention Maps. We analyzed the attention weights of both spatial and causal
transformers of CT-ViT. In both cases, attention values of a single head and layer
appear noisy and do not correspond to identifiable anatomical structures. These
findings suggest that attention weights from individual heads, when visualized
directly, lack interpretable spatial localization.

Attention Rollout. The attention rollout maps from both spatial and causal
transformers appear smooth and spatially contiguous. However, in both cases,
the attribution is distributed broadly throughout the scan without anatomical
specificity or alignment to known structures, resulting in diffuse and weak local-
izations.
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Integrated Gradients. The resulting maps display varying levels of spatial
focus. While some foreground regions show elevated attribution, there is no
consistent correspondence to distinct anatomical features associated with lung
pathologies. These results reflect the methods sensitivity to input structure and
the absence of explicit spatial supervision during model training.

Grad-CAM. We applied Grad-CAM to the final layers of the spatial and causal
transformers, as well as to the VQ layer of the CT-CLIP encoder. Attribu-
tion maps from the spatial and causal layers were typically sparse and diffuse,
with activations often appearing in anatomically irrelevant regions, including
image padding. These patterns lacked consistent correspondence with pathology-
related structures, indicating limited utility for weak localization.

Grad-CAM applied to the VQ layer yielded more spatially contiguous acti-
vations, likely due to its role in aggregating and discretizing global features.
However, these maps frequently emphasized background or non-lung regions,
suggesting the models reliance on scanner-specific artifacts or formatting cues
rather than clinically meaningful content. This behavior indicates potential over-
fitting to dataset-specific structure and undermines the generalizability of Grad-
CAM-based interpretability in this setting.

Occlusion Sensitivity. The resulting maps exhibit more localized and inter-
pretable patterns, with activations predominantly focused on the lung regions.
The signal is typically weak or absent across most of the scan, but becomes
distinctly stronger within slices containing lung tissue, before diminishing again
once the lungs are no longer visible. While occasional signals appear outside the
lungs, they rarely occur in background regions, making this approach the most
consistent and reliable among the attribution methods evaluated.

5 Discussion

The strongest results were obtained using the occlusion method—the only model-
agnostic attribution approach in our study. This method consistently highlighted
localized, high-signal regions within the lungs while largely ignoring irrelevant
scan areas. These findings suggest that VLP models may have potential for local-
izing pathologies described in accompanying text, even within volumetric data.
However, to rigorously evaluate the quality of the resulting attribution maps, a
follow-up study should be conducted using a dataset with ground truth segmen-
tation labels. This would require either annotating portions of the CT-RATE
dataset or constructing a new dataset with segmentation masks and training a
CLIP-style model on it.

In contrast, model-specific attribution methods were largely ineffective in pro-
ducing meaningful spatial explanations. At best, gradient-based techniques such
as Integrated Gradients and Grad-CAM highlighted broad, non-specific regions
of the body without clearly localizing pathology-relevant areas. At worst, the
attribution maps appeared scattered or random, lacking any apparent anatomi-
cal correspondence. These findings highlight the uncertainty around whether the
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gradient signal derived from cosine similarity between image and text embed-
dings is sufficiently informative to enable spatial localization in complex 3D
medical images.

Attention-based methods, which do not rely on gradients, also failed to pro-
duce spatially meaningful attribution maps. In our experiments, attention roll-
out resulted in extremely sparse or diffuse activations across the volume, and
individual attention heads often produced patterns resembling noise rather than
localized structure. These findings are consistent with those of Zhao et al. [18],
who evaluated a range of attribution techniques on 2D CLIP models in the nat-
ural image domain. They attributed the poor performance of attention-based
methods to the inherent sparsity of attention distributions in transformers.

We theorize that the poor quality of attribution maps may stem, in part, from
the architectural structure of CT-CLIPs image encoder. Rather than allowing
attention to flow freely across the entire scan, the model applies a two-stage
transformer: a spatial transformer, which restricts attention within individual
axial slices, followed by a causal transformer, which aggregates information
across depth-wise pillars of patches. While this setup enables each patch to
eventually access global context, the separation into two rigid stages introduces
artificial constraints that may distort spatial relationships—ultimately degrad-
ing the interpretability of attention-based visualizations.

This architectural choice can be traced back to the origins of CT-ViT, which
was adapted from a video model architecture [13]. In the video domain, sepa-
rating spatial and causal transformers makes intuitive sense: one processes indi-
vidual frames, while the other captures motion dynamics. Although CT volumes
are three-dimensional, treating them as temporally structured sequences may not
be ideal. The two-part transformer design was likely motivated by the need to
reduce the quadratic cost of self-attention. However, alternative architectures—
such as a single 3D Swin Transformer—could offer a more holistic representation
of the scan, while maintaining tractable attention computation through localized
attention windows [19].

6 Conclusion

In this work, we explored the potential of CLIP-style vision—language models
for weakly supervised localization in 3D chest CT scans using free-text radiol-
ogy reports. By adapting several attribution methods, we assessed whether the
learned image—text alignment encodes spatially meaningful features. While the
occlusion method produced the most promising and localized attribution maps,
gradient- and attention-based techniques struggled to reveal coherent patterns—
likely due to architectural constraints and the global nature of contrastive super-
vision. Our results suggest that vision-language pretraining can support localiza-
tion in volumetric medical data, but further progress may require architectural
adjustments.
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Abstract. Accurate intraoperative imaging is essential for successful
endovascular aneurysm repair (EVAR), enabling navigation of complex
vascular anatomies and precise device placement. Surgeons often acquire
multiple angiographic views, but manual viewpoint selection can lead
to repeated C-arm repositioning, increased radiation exposure, and pro-
longed procedures. While recent methods automate view planning using
vascular geometry and pose estimation, they often assume unrestricted
C-arm mobility and overlook device-specific spatial constraints. In this
work, we propose a novel constraint-aware, automated multi-view plan-
ning framework that leverages preoperative CTA data to generate opti-
mized X-ray views tailored to procedural and equipment limitations.
Our method starts with vessel segmentation, centerline extraction, and
vessel graph construction. A planning route is defined along the target
centerline, from which discrete points are sampled as local region centers.
For each center, we define a region of interest and solve a constrained
optimization problem to determine the optimal viewing orientation. The
objective function combines two criteria: vessel spread area, computed
via the convex hull area of the projected centerline, and inter-region
projection separation, which promotes spatially clear views by minimiz-
ing overlap. We validated our framework on an in-house preoperative
CTA dataset from 27 patients. Both qualitative and quantitative results
demonstrate improved region visibility, spatial separation, and continuity
of optimal viewing poses along the vascular path.
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Endovascular Procedures
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1 Introduction

Minimally invasive vascular interventions such as endovascular aneurysm repair
(EVAR) rely heavily on high-quality intraoperative imaging for successful nav-
igation and device placement [3,10]. In these procedures, clear visualization of
the vascular anatomy, particularly around bifurcations, curvatures, and aneurys-
mal segments, is critical. Surgeons typically acquire multiple angiography X-ray
views to guide catheters through complex vascular structures. However, manual
selection of these views remains subjective and inconsistent, which leads to exces-
sive C-arm repositioning, prolonged procedure times, and increased exposure to
radiation and contrast agents [2,5,11].

Recent advances in medical image analysis and multi-modality integration
have paved the way for more intelligent and efficient imaging workflows. Preoper-
ative CT angiography (CTA) provides detailed anatomical information, enabling
the development of machine learning or deep learning methods for tasks such
as vessel segmentation [4] and bifurcation detection [8]. For intraoperative X-
ray view estimation, several approaches based on geometric heuristics or C-arm
positioning feedback have been proposed [2,7,13], often involving plane fitting
to centerline segments or cross-modality view matching. While these methods
show promise, many assume unconstrained C-arm motion, and rely on curated
training data or manual initialization [5,11]. In practice, spatial constraints such
as limited degrees of freedom, bulky gantries, and sterile field requirements com-
plicate view planning, limiting the applicability of these idealized approaches.

To address these limitations, we propose a constraint-aware optimization
framework for automated X-ray view planning in vascular interventions. Our
method uses geometric priors extracted from preoperative CTA, specifically ves-
sel centerlines, to define region-specific objectives that balance two key criteria:
maximizing the projected coverage of vessel anatomy within each local region
and promoting clear spatial separation between overlapping vascular segments in
the projection plane. Local anatomical regions are weighted based on predefined
clinical priorities, and a customized scoring function guides the optimization to
emphasize critical structures. The optimization problem is formulated as a con-
strained maximization of this composite score over bounded orientation intervals,
reflecting the mechanical constraints and limited degrees of freedom of clinical
C-arm systems. Non-differentiability arises from the discrete sampling of ves-
sel regions and non-smooth scoring components. To solve this non-differentiable
problem efficiently, we employ the BOBYQA algorithm [6], a derivative-free
method well-suited for applications where gradient information is unavailable or
unreliable. This formulation ensures clinically feasible and smooth pose transi-
tions while avoiding the need for learned models or RANSAC-based estimators.

Our key contributions are: (i) a mathematically rigorous formulation for
constraint-aware X-ray view planning that does not depend on annotated train-
ing data or predefined local planes; (ii) a novel region-based scoring function
integrating clinical priorities with geometric constraints; and (iii) a comprehen-
sive validation demonstrating improved vascular visibility, enhanced spatial sep-
aration of vessel regions, and coherent pose trajectories along the intervention
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Fig. 1. An overview of the proposed pipeline for automatic constraint-aware view plan-
ning for vascular interventions.
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path. These results confirm the potential of our approach to enhance procedural
efficiency while respecting clinical constraints.

2 Methodology

This section provides a detailed description of the methodology outlined in Fig. 1.

2.1 Topology Information Extraction

Vascular Graph Construction. We first segment the vascular structures from
the preoperative CTA scan using nnU-Net [4,13], followed by centerline extrac-
tion to capture the vessel topology. These centerlines are used to construct an
undirected graph G = (V, E), where each node v € V represents an anatomical
landmark, such as a bifurcation, an endpoint or an aneurysm’s centroid, and
each edge e € E corresponds to a vessel segment connecting two landmarks. In
this graph, the degree of a node is defined as the number of edges connected to
it. Endpoints are nodes with a degree of one, indicating a connection to only one
other node, while bifurcations are nodes with a degree greater than two, reflect-
ing a branching point in the vessel network. Following the method described
n [13], the aneurysms can be segmented via nnU-Net [4], and their centroids
are computed and added to the graph as annotated nodes. This representation
preserves both geometric structure and anatomical context for downstream pro-
cessing,.



100 B. Zhang et al.

Route Planning. Given the vascular graph G = (V, E), a starting node v;
and goal node vy, Dijkstra’s algorithm [1] is applied to compute the shortest
intervention route P = (V', E’). The resulting route consists of a sequence of
anatomical landmarks V'’ = {vg, vy, va, ..., v}, which are then traversed in order
along the intervention route.

Reference Points Sampling. In order to capture the curvature of vessel
branches between these landmarks V', the reference points for the downstream
view optimization should include not only these landmarks but also interme-
diate points sampled along the vessel centerlines E’. Therefore, a fixed spacing
parameter d; (in millimeters) defines the uniform sampling density. Each center-
line segment between consecutive nodes in the planned route is parameterized
by arc length as:

@:ZHXJ'*XJ'—HIQ, fori=1,...,N (1)

Jj=1

where x; are the centerline points and ¢; is the arc-length at point ¢. Linear
interpolation over this arc-length parameterization is then used to sample new
points at uniform intervals of ds. Sampling is performed independently for each
segment to ensure consistent and anatomically meaningful coverage along the
intervention route.

Local Topology Extraction. After defining the reference points along the
intervention route, we extract local vascular regions around each point to guide
the X-ray view optimization. These regions are selected based on both the vessel
topology and spatial proximity. For points located on vessel branches, the local
region includes only the corresponding vessel segment. For points at bifurcations,
the region is expanded to include all directly connected neighboring branches,
ensuring the full branching structure is captured and reducing overlap at bifur-
cations in projection. To avoid the influence of long distant vessel structures with
complex curvature, we limit each local region to a fixed 3D radius r. centered at
the reference point. Additionally, to prevent overlap between adjacent regions,
this radius is constrained to be no larger than half the sampling distance d.

2.2 View Optimization

With the local regions of interest defined, we now optimize the X-ray viewing
pose to enhance vascular visibility. In unconstrained settings, a common app-
roach is to compute the mean plane [13] of the target vessel structure and align
the C-arm such that the X-ray beam is orthogonal to this plane. However, in
real-world operating rooms, mechanical limits often restrict the range of motion
of the imaging system. As such, these idealized views may be physically unreach-
able. To overcome this, we introduce a constraint-aware optimization strategy
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that prioritizes broad vascular coverage and clear separation of relevant struc-
tures in the resulting projection. Here, we represent each C-arm view as a pose
in 3D space with six degrees of freedom:

0= (wvt) = (Oé,ﬁ,’}/,tw,ty,tz) (2)

where w = (o, 3,7) is the orientation (Euler angles), and t = (t,%,,t.) is the
translation. Since translation of the C-arm is typically unconstrained in clinical
settings, we set the translation vector t to the 3D coordinates of the center of
the current local region to maintain focus on the anatomical region of interest.
Then, the optimization is performed over the orientation vector w, constrained
to a bounded domain 2, reflecting the mechanical limits of the imaging system:

w e = [amina amax} X [ﬂminvﬁmax] X [7mina'7max] (3)

Objective Function. In our proposed constraint-aware optimization strategy,
the objective function integrates two complementary criteria: (i) the spatial cov-
erage of the vessel region on the 2d detector plane, quantified by Sspread; and
(ii) the separation between the projected images of different anatomical regions,
measured by Sgep.

To compute the spread score Sgpread, €ach local region is projected onto the
detector plane. The area of the convex hull enclosing the resulting 2D points is
then used to quantify how widely the region is distributed in the image. The
convex hull conh(S) of a point set S = {x1,x2,...,2,} is defined as the smallest
convex shape that contains all the points in S, and is formally given by:

conh(S) = {Z N ‘ Ai=0,3 N = 1}. (4)
=1 i=1

The set of points S in this context corresponds to the projection of a region R
onto the 2D detector plane under the pose 6. Hence, the convex hull surface area
Apu,i(0) serves as a measure of how much the region R; spreads in projection
under pose 6

Apun,i(0) = Area (conh(mg(R;))) . (5)

Since the convex hull area also depends on the underlying shape and topology
of each 3D local region, we normalize the area of each region’s convex hull to
ensure that all regions are treated equally during optimization. Specifically, we
normalize the area using the maximal achievable convex hull area under spatial
constraints, defined as Ahmua]’l‘l = max Anun,i(6). Meanwhile, each region can be

assigned a clinical priority factor p;, where lower priority values p; indicate higher
importance. Finally, the spread score can be defined as:

max
hull %

A u z . K
Sspread R D, R, 0 Z >\ h s ) Wlth )\z = (]- +pmax - pz) (6)
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where k = 2 modulates its contribution to the spread score, pma.x means the
maximum value among the priority set p, and IV represents the number of regions
participating in view optimization.

The separation score S, is defined as the minimum pairwise distance
between the 2D centroids of the projected regions. This score encourages view
configurations in which the regions appear more spatially distinct on the detector
plane.

Seep(R,0) = min [lu; = ;| (7)

where u; denotes the centroid of the projected 2D points of region R;. By com-
bining the two scores through a weighted sum, we define the total objective
function as:

Stotal(R7p7 R, 9) = Vs Sspread(R7pa R, 9) + Vse - Ssep(R7 9)7 (8)

where vs and v are weighting coefficients that balance the contributions of the
spread and separation scores, respectively.

Constrained Optimization. Given the objective function Siota and the
bounded domain 2, we solve

w* = arg maé Stotal(R7p7 K, (w7 t)) (9)
we

to determine the optimal X-ray viewing angles along the vascular route. This
formulation involves components such as convex hull area and minimum inter-
region distances, which are non-differentiable. To handle this, we employ the
derivative-free BOBYQA optimizer [6], which is well-suited for optimizing non-
differentiable functions within bounded domains. During traversal of the vascular
route, each optimization is initialized using the optimal orientation from the pre-
vious region. This promotes temporal continuity and reduces abrupt transitions
between successive views. The final optimal pose is defined by the optimized
orientation in combination with the fixed translation, expressed as:

0" = (w*, t), (10)

which is subsequently used to generate a digital reconstructed radiography
(DRR) image [9,12] for visualization.

3 Experiments and Results
3.1 Experimental Setup and Dataset

Reference points are sampled along the vessel centerlines at fixed intervals of
ds = 40 mm. For local region cropping, the fixed 3D radius 7. is set as 26 mm.
For DRR generation, a virtual X-ray imaging system is used, configured to match
the geometric parameters of a standard C-arm device. Specifically, the distance
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from the X-ray source to the isocenter is 742.5 mm, and the distance from the
detector to the isocenter is 517.15 mm. The detector has a width and height of
432 mm, with a pixel size of 0.3 mm.

A abdominal dataset collected from 27 patients diagnosed with aneurysms is
used for experiments. For each patient, a preoperative CTA scan was acquired
using a GE Revolution EVO CT scanner. The reconstructed slice thickness of
the CTA images ranges from 1 mm to 3mm, and the in-plane spacing ranges
from 0.79 mm to 1.34 mm.

3.2 Visual Results

We compare our method against two commonly used view planning strategies.
The first is the mean-plane view, where the C-arm is oriented orthogonally to
the mean plane of the target vessel segment, following the approach of [13]. The
second is a clinical base view, a static configuration using default pose angles
that simulates standard clinical practice without any optimization. To reflect the
realistic mechanical limits of the C-arm system, we impose angular constraints
of £20°, £20°, and +£10° on the rotation angles «, 3, and -y, respectively.

The comparison was performed using DRRs generated under the poses pre-
scribed by each method. As shown in Fig. 2, our method produces DRRs with
improved anatomical coverage and clearer separation of vascular structures, par-
ticularly around bifurcations and curved regions. The green overlay highlights
the primary target region in each view, with the optimized pose parameters dis-
played in the top-left corner of the image produced by our method. Our method
generates projections that resemble clinical views in many cases but reveal addi-
tional curvature or elongation in areas that are otherwise flattened. Notably, in
some regions where the orthogonal views method produces poses that exceed
the spatial constraints, our optimized views maintain vessel spread within the
prescribed mechanical limits.

3.3 Impact of Initialization and Prioritization on Displacement

We evaluated the stability and continuity of C-arm pose transitions along a
vascular route consisting of eight regions, beginning from the anteroposterior
(AP) view. Displacement between sequential poses was measured as the element-
wise absolute angular difference between successive optimal orientations, defined
as » . |wf — wi,| across the three rotation axes ¢, 3, and 7.

We compared multiple view optimization strategies using either 0-NN or
1-NN, under two initialization schemes, as shown in Table 1. In init-1, each
optimization step is warm-started using the previously computed optimal pose.
In init-2, optimization is reinitialized from the AP view at each step. "K-NN”
refers to using the K Nearest Neighboring regions along the route during each
optimization step. All experiments were conducted under relaxed angular bounds
of +45°, allowing broader exploration of pose variability.

Among all configurations, the 1-NN&initl strategy yielded the most sta-
ble transitions, with the lowest average displacements per axis (4.3°, 7.2°, and
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Fig. 2. Comparison of DRRs generated using (a) our view optimization method, (b)
the orthogonal views method [13] and (c) clinical base view without any optimization.

Table 1. Per-Axis Displacement for Optimization Strategies

Metric in deg («, 3, v)[1-NN&initl |1-NN&init2 0-NN&init1 0-NN&init2

Total displ. per axis |30.1/50.6(144.2/180.6/124.4/86.3/219.9/207.4/66.5224.9/187.9/128.7
Avg displ. per axis 4.3/7.2120.6|25.817.8/12.3/31.4/29.69.5|32.1/26.8 184
Std Dev 3.5(12.1/25.3|30.4 | 11.5 22.5/ 23.4 | 24.1 |16.6| 26.4 | 15.8 | 16.0

20.6°). This suggests that incorporating local continuity along the route and
warm-starting from the previous pose significantly reduces inter-view variabil-
ity. In contrast, the 0-NN&init2 strategy led to the highest displacement (aver-
age: 32.1°, 26.8°, 18.4°), indicating that ignoring neighboring regions and reini-
tializing from a fixed AP view can produce abrupt pose shifts. Overall, these
results underscore the importance of continuity-aware initialization and spatially
informed multi-region optimization.

4 Conclusion

In this work, we proposed a constraint-aware optimization framework for C-
arm view planning that simultaneously maximizes vascular region coverage and
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spatial separation under realistic mechanical limits. By integrating convex hull-
based spread and inter-region separation scores into a unified objective, our
method effectively identifies optimal X-ray poses that improve anatomical vis-
ibility while respecting device constraints. The use of derivative-free optimiza-
tion and warm-starting initialization ensures smooth transitions along vascular
paths, enhancing clinical applicability. Our experiments on abdominal vascular
datasets demonstrated that the optimized views consistently outperform com-
mon baseline strategies, such as orthogonal mean-plane and static clinical base
views, by providing clearer separation and better spatial coverage of vascular
structures. Overall, our approach offers a practical solution to improve intra-
operative imaging and navigation by providing optimized, constraint-compliant
X-ray viewpoints. Future work will explore adaptive weighting schemes and real-
time implementation to further support dynamic clinical scenarios.
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